Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mycoses ; 67(5): e13728, 2024 May.
Article in English | MEDLINE | ID: mdl-38695201

ABSTRACT

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Fusariosis , Fusarium , Keratitis , Microbial Sensitivity Tests , Humans , Brazil/epidemiology , Fusarium/genetics , Fusarium/drug effects , Fusarium/isolation & purification , Fusarium/classification , Male , Female , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Middle Aged , Fusariosis/microbiology , Fusariosis/epidemiology , Fusariosis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Aged , Young Adult , Adolescent , Tropical Climate , Aged, 80 and over , Amphotericin B/pharmacology , Amphotericin B/therapeutic use
2.
Protoplasma ; 261(3): 513-525, 2024 May.
Article in English | MEDLINE | ID: mdl-38114665

ABSTRACT

The galls can offer shelter, protection, and an adequate diet for the gall-inducing organisms. Herein, we evaluated the structure of Manihot esculenta leaves and galls induced by Iatrophobia brasiliensis in order to identify metabolic and cell wall composition changes. We expected to find a complex gall with high primary metabolism in a typical nutritive tissue. Non-galled leaves and galls were subjected to anatomical, histochemical, and immunocytochemical analyses to evaluate the structural features, primary and secondary metabolites, and glycoproteins, pectins, and hemicelluloses in the cell wall. The gall is cylindric, with a uniseriate epidermis, a larval chamber, and a parenchymatic cortex divided into outer and inner compartments. The outer compartment has large cells with intercellular spaces and stocks starch and is designated as storage tissue. Reducing sugars, proteins, phenolic compounds, and alkaloids were detected in the protoplast of inner tissue cells of galls, named nutritive tissue, which presents five layers of compact small cells. Cell walls with esterified homogalacturonans (HGs) occurred in some cells of the galls indicating the continuous biosynthesis of HGs. For both non-galled leaves and galls, galactans and xyloglucans were broadly labeled on the cell walls, indicating a cell growth capacity and cell wall stiffness, respectively. The cell wall of the nutritive tissue had wide labeling for glycoproteins, HGs, heteroxylans, and xyloglucans, which can be used as source for the diet of the galling insect. Manihot esculenta galls have compartments specialized in the protection and feeding of the galling insect, structured by nutritive tissue rich in resource compounds, in the cell walls and protoplast.


Subject(s)
Diptera , Euphorbiaceae , Manihot , Phobic Disorders , Animals , Protoplasts , Glycoproteins/metabolism , Cell Wall , Plant Tumors , Plant Leaves/metabolism
3.
J Fungi (Basel) ; 9(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37623615

ABSTRACT

The present study aimed to describe the clinical, epidemiological and laboratory characteristics of invasive candidiasis by C. parapsilosis complex (CPC) in a Brazilian tertiary pediatric hospital during the COVID-19 pandemic. Clinical samples were processed in the BACT/ALERT® 3D system or on agar plates. Definitive identification was achieved by MALDI-TOF MS. Antifungal susceptibility was initially analyzed by the VITEK 2 system (AST-YS08 card) and confirmed by the CLSI protocol. Patient data were collected from the medical records using a structured questionnaire. CPC was recovered from 124 patients over an 18-month period, as follows: C. parapsilosis (83.87%), C. orthopsilosis (13.71%) and C. metapsilosis (2.42%). Antifungal resistance was not detected. The age of the patients with invasive CPC infections ranged from <1 to 18 years, and most of them came from oncology-related sectors, as these patients were more affected by C. parapsilosis. C. orthopsilosis infections were significantly more prevalent in patients from critical care units. Invasive infections caused by different pathogens occurred in 75 patients up to 30 days after the recovery of CPC isolates. Overall, 23 (18.55%) patients died within 30 days of CPC diagnosis. Catheter removal and antifungal therapy were important measures to prevent mortality. COVID-19 coinfection was only detected in one patient.

4.
Protoplasma ; 260(5): 1287-1302, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36892633

ABSTRACT

Infection by the root-knot nematode (RKN), Meloidogyne incognita, impacts crop productivity worldwide, including parsley cultures (Petroselinum crispum). Meloidogyne infection involves a complex relationship between the pathogen and the host plant tissues, leading to the formation of galls and feeding sites that disorganize the vascular system, affecting the development of cultures. Herein, we sought to evaluate the impact of RKN on the agronomic traits, histology, and cell wall components of parsley, with emphasis on giant cell formation. The study consisted of two treatments: (i) control, where 50 individuals of parsley grew without M. incognita inoculation; and (ii) inoculated plants, where 50 individuals were exposed to juveniles (J2) of M. incognita. Meloidogyne incognita infection affected the development of parsley, reducing the growth of some agronomical characteristics such as root weight and shoot weight and height. Giant cell formation was noticed at 18 days after inoculation, promoting disorganization of the vascular system. Epitopes of HGs detected in giant cells reveal the continuous capacity of giant cells to elongate under the stimulus of RKN, essential processes for feeding site establishment. In addition, the detection of epitopes of HGs with low and high methyl-esterified groups indicates the PMEs activity despite biotic stress.


Subject(s)
Petroselinum , Tylenchoidea , Humans , Animals , Cell Wall
5.
Naturwissenschaften ; 108(3): 16, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33871712

ABSTRACT

The development of plant organs depends on cell division, elongation, structural and chemical changes, and reorganization of cell wall components. As phenotype manipulators, galling insects can manipulate the structure and metabolism of host tissues to build the gall. The gall formation depends on the rearrangement of cell wall components to allow cell growth and elongation, key step for the knowledge regarding gall development, and shape acquisition. Herein, we used an immunocytochemical approach to investigate the chemical composition of the cell wall during the development of galls induced by Bystracoccus mataybae (Eriococcidae) on leaflets of Matayba guianensis (Sapindaceae). Different developmental stages of non-galled leaflets (n = 10) and of leaflet galls (n = 10) were collected from the Cerrado (Brazilian savanna) for anatomical and immunocytochemical analysis. We found that the epitopes of (1 → 4) ß-D-galactans and (1 → 5) α-L-arabinans were evident in the tissues of the young and senescent galls. These epitopes seem to be associated with the mechanical stability maintenance and increased gall porosity. As well, the degree of methyl-esterification of pectins changed from the young to the senescent galls and revealed the conservation of juvenile cell and tissue features even in the senescent galls. The extensins detected in senescent galls seem to support their rigidity and structural reinforcement of these bodies. Our results showed a disruption in the pattern of deposition of leaflet cell wall for the construction of M. guianensis galls, with pectin and protein modulation associated with the change of the developmental gall stages.


Subject(s)
Cell Wall/chemistry , Immunohistochemistry , Plant Tumors , Sapindaceae/cytology
6.
Protoplasma ; 258(5): 979-990, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33532872

ABSTRACT

Root-knot nematodes are endoparasites whose mature females lodge and grow inside the root of some cultivated plants, leading to losses in productivity. Herein, we investigated if the infection of okra, Abelmoschus esculentus (Malvaceae), promoted by the root-knot nematode Meloidogyne incognita (Meloidogynidae) changes some agronomic traits of the host plant, as well as the cell wall composition of the root tissues. The okra Santa Cruz 47® cultivar was infected with a suspension of 5000 M. incognita juveniles. The inoculated and non-inoculated okra plants were then submitted to morphological analysis at the end of experiment, as well as histological (at 4, 11, 18, 39, ad 66 days after inoculation) and immunocytochemical analysis (control and 66 days after inoculation). Root-knot nematode infection reduced the dry weight of the stem system but, unexpectedly, the number and weight of fruits increased. At 11 days after inoculation, we detected the presence of giant cells that increased in number and size until the end of the experiment, at 66 days after inoculation. These cells came from the xylem parenchyma and showed intense and moderate labeling for epitopes recognized by JIM5 and JIM7. The presence of homogalacturonans (HGs) with different degrees of methyl esterification seems to be related to the injuries caused by the nematode feeding activity and to the processes of giant cell hypertrophy. In addition, the presence of HGs with high methyl-esterified groups can increase the cell wall porosity and facilitate the flux of nutrients for the root-knot nematode.


Subject(s)
Abelmoschus , Malvaceae , Tylenchoidea , Animals , Cell Wall , Plant Diseases , Plant Roots
7.
Protoplasma ; 257(1): 103-118, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31402407

ABSTRACT

The chemical composition of the cell walls strongly affects water permeability and storage in root tissues. Since epiphytic orchids live in a habitat with a highly fluctuating water supply, the root cell walls are functionally important. In the present study, we used histochemistry and immunocytochemistry techniques in order to determine the composition of the cell walls of root tissues of 18 epiphytic species belonging to seven subtribes across the Orchidaceae. The impregnation of lignin in the velamen cells reinforces its function as mechanical support and can facilitate apoplastic flow. Pectins, as well cellulose and lignins, are also essential for the stability and mechanical support of velamen cells. The exodermis and endodermis possess a suberinized lamella and often lignified walls that function as selective barriers to apoplastic flow. Various cortical parenchyma secondary wall thickenings, including phi, reticulated, and uniform, prevent the cortex from collapsing during periods of desiccation. The presence of highly methyl-esterified pectins in the cortical parenchyma facilitates the formation of gels, causing wall loosening and increased porosity, which contributes to water storage and solute transport between cells. Finally, cells with lipid or lignin impregnation in the cortical parenchyma could increase the water flow towards the stele.


Subject(s)
Cell Wall/chemistry , Orchidaceae/chemistry , Orchidaceae/cytology , Plant Roots/chemistry , Lignin/metabolism , Lipids/chemistry , Pectins/metabolism
8.
PLoS One ; 9(4): e94588, 2014.
Article in English | MEDLINE | ID: mdl-24747777

ABSTRACT

Insect galls may be study models to test the distribution of pectins and arabinogalactan-proteins (AGPs) and their related functions during plant cell cycles. These molecules are herein histochemically and immunocitochemically investigated in the kidney-shaped gall induced by Baccharopelma dracunculifoliae (Psyllidae) on leaves of Baccharis dracunculifolia DC. (Asteraceae) on developmental basis. The homogalacturonans (HGAs) (labeled by JIM5) and the arabinans (labeled by LM6) were detected either in non-galled leaves or in young galls, and indicated stiffening of epidermal cell walls, which is an important step for cell redifferentiation. The labeling of HGAs by JIM7 changed from young to senescent stage, with an increase in the rigidity of cell walls, which is important for the acquaintance of the final gall shape and for the mechanical opening of the gall. The variation on the degree of HGAs during gall development indicated differential PMEs activity during gall development. The epitopes recognized by LM2 (AGP glycan) and LM5 (1-4-ß-D-galactans) had poor alterations from non-galled leaves towards gall maturation and senescence. Moreover, the dynamics of pectin and AGPs on two comparable mature kidney-shaped galls on B. dracunculifolia and on B. reticularia revealed specific peculiarities. Our results indicate that similar gall morphotypes in cogeneric host species may present distinct cell responses in the subcelular level, and also corroborate the functions proposed in literature for HGAs.


Subject(s)
Baccharis/metabolism , Pectins/metabolism , Plant Tumors , Baccharis/cytology , Epitopes/immunology , Esterification , Pectins/immunology , Plant Leaves/cytology , Plant Leaves/metabolism
9.
Protoplasma ; 251(4): 747-53, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24213017

ABSTRACT

Cell redifferentiation, division, and elongation are recurrent processes, which occur during gall development, and are dependent on the cellulose microfibrils reorientation. We hypothesized that changes in the microfibrils orientation from non-galled tissues to galled ones occur and determine the final gall shape. This determination is caused by a new tissue zonation, its hyperplasia, and relative cell hypertrophy. The impact of the insect's activity on these patterns of cell development was herein tested in Baccharopelma dracunculifoliae-Baccharis dracunculifolia system. In this system, the microfibrils are oriented perpendicularly to the longest cell axis in elongated cells and randomly in isodiametric ones, either in non-galled or in galled tissues. The isodiametric cells of the abaxial epidermis in non-galled tissues divided and elongated periclinally, forming the outer gall epidermis. The anticlinally elongated cells of the abaxial palisade layer and the isodiametric cells of the spongy parenchyma originated the gall outer cortex with hypertrophied and periclinally elongated cells. The anticlinally elongated cells of the adaxial palisade layer originated the inner cortex with hypertrophied and periclinally elongated cells in young and mature galls and isodiametric cells in senescent galls. The isodiametric cells of the adaxial epidermis elongated periclinally in the inner gall epidermis. The current investigation demonstrates the role of cellulose microfibril reorientation for gall development. Once many factors other than this reorientation act on gall development, it should be interesting to check the possible relationship of the new cell elongation patterns with the pectic composition of the cell walls.


Subject(s)
Baccharis/cytology , Plant Tumors , Baccharis/metabolism , Cell Differentiation , Cell Division , Plant Leaves/cytology , Plant Leaves/metabolism
10.
Protoplasma ; 250(4): 899-908, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23255001

ABSTRACT

The pectic composition of cell wall is altered during the processes of cell differentiation, plant growth, and development. These alterations may be time-dependent, and fluctuate in distinct regions of the same cell or tissue layer, due to the biotic stress caused by the activity of the gall inducer. Among the roles of the pectins in cell wall, elasticity, rigidity, porosity, and control of cell death may be crucial during gall development. Galls on Baccharis reticularia present species-specific patterns of development leading to related morphotypes where pectins were widely detected by Ruthenium red, and the pectic epitopes were labeled with specific monoclonal antibodies (LM1, LM2, LM5, LM6, JIM5, and JIM7) in distinct sites of the non-galled and the galled tissues. In the studied system B. reticularia, the epitopes for extensins were not labeled in the non-galled tissues, as well as in those of the rolling and kidney-shaped galls. The high methyl-esterified homogalacturonans (HGA) were labeled all over the tissues either of non-galled leaves or of the three gall morphotypes, while the intense labeling for arabinogalactans was obtained just in the rolling galls. The pectic composition of non-galled leaves denotes their maturity. The kidney-shaped gall was the most similar to the non-galled leaves. The pectic dynamics in the gall tissues was particularly altered in relation to low methyl-esterified HGA, which confers elasticity and expansion, as well as porosity and adhesion to cell walls, and are related to the homogenization and hypertrophy of gall cortex, and to translocation of solutes to the larval chamber. Herein, the importance of the pectic dynamics of cell walls to the new functional design established during gall development is discussed for the first time. The repetitive developmental patterns in galls are elegant models for studies on cell differentiation.


Subject(s)
Asteraceae/metabolism , Baccharis/metabolism , Pectins/metabolism , Cell Wall/metabolism , Immunohistochemistry , Plant Leaves/metabolism
11.
Plant Sci ; 180(3): 489-95, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21421396

ABSTRACT

The generation of ROS (reactive oxygen species) in plant galls may induce the degradation of the membrane systems of a plant cell and increase the number of plastoglobules. This numerical increase has been related to the prevention of damage to the thylakoid systems, and to the maintenance of photosynthesis rates. To investigate this hypothesis in gall systems, a comparative study of the ultrastructure of chloroplasts in non-galled leaves and in leaf galls of A. australe and A. spruceanum was conducted. Also, the pigment composition and the photosynthetic performance as estimated by chlorophyll fluorescence measurements were evaluated. The ultrastructural analyses revealed an increase in the number and size of plastoglobules in galls of both species studied. The levels of total chlorophylls and carotenoids were lower in galls than in non-galled tissues. The chlorophyll a/b ratio did not differ between the non-galled tissues and both kinds of galls. The values of maximum electron transport rate (ETR(MAX)) were similar for all the samples. The occurrence of numerous large plastoglobules in the galled tissues seemed to be related to oxidative stress and to the recovery of the thylakoid membrane systems. The maintenance of the ETR(MAX) values indicated the existence of an efficient strategy to maintain similar photosynthetic rates in galled and non-galled tissues.


Subject(s)
Aspidosperma/metabolism , Chloroplasts/metabolism , Lipoproteins/metabolism , Oxidative Stress , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Tumors , Aspidosperma/ultrastructure , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A , Chloroplasts/ultrastructure , Electron Transport/physiology , Fluorescence , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Reactive Oxygen Species , Thylakoids
12.
Protoplasma ; 248(4): 829-37, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21207084

ABSTRACT

Previous ultrastructural and histochemical analysis proposed patterns in the accumulation of substances in galls of Diptera: Cecidomyiidae in some plant species of the temperate region. Similar analyses were done to verify the conservativeness of these patterns in the Neotropical region, where a great number of species of Cecidomyiidae is responsible for a wide diversity of morphotypes. Two gall morphotypes induced by Cecidomyiidae in a unique host plant, Copaifera langsdorffii, were studied. The gradients of carbohydrates and the activity of invertases and acid phosphatases were similar, but the cytological gradients and distribution of proteins evidenced that the sites of the induction as well as the amount of neoformed tissues may be peculiar to each gall system. The production of lipids just in the secretory cavities either in the non-galled or galled tissues indicated a potentiality of the host plant which could not be manipulated by the galling insects. Further, the absence of nucleus in the nutritive tissue, an exclusive feature of the horn-shaped galls, indicates cell death attributed to the feeding habit of the galling herbivore.


Subject(s)
Diptera/pathogenicity , Fabaceae/anatomy & histology , Fabaceae/cytology , Plant Tumors/parasitology , Acid Phosphatase/metabolism , Animals , Cell Nucleus/metabolism , Enzyme Activation , Fabaceae/metabolism , Fabaceae/parasitology , Herbivory , Mesophyll Cells/metabolism , Mesophyll Cells/ultrastructure , Microscopy, Electron, Transmission , Plant Leaves/metabolism , Plant Leaves/parasitology , Plant Leaves/ultrastructure , beta-Fructofuranosidase/metabolism
13.
Rev Biol Trop ; 57(1-2): 293-302, 2009.
Article in English | MEDLINE | ID: mdl-19637708

ABSTRACT

Gall inducing insects most frequently oviposit in young tissues because these tissues have higher metabolism and potential for differentiation. However, these insects may also successfully establish in mature tissues as was observed in the super-host Copaifera langsdorffii. Among C. langsdorffii gall morphotypes, one of the most common is a midrib gall induced by an undescribed species of Cecidomyiidae. Following this 'host plant and gall-inducing insect' model, we addressed two questions: 1) Do the age of the tissues alter the gall extended phenotype? 2) Do gall morphological and anatomical features influence the adaptive value of the galling insect? For anatomical and histometrical studies, transverse sections of young and mature, galled and ungalled samples were prepared. Galls in young leaflets presented higher potential for cell division and greater nutritive reserves, whereas galls in mature leaflets perhaps provide more protection against natural predators and desiccation. Host organ age at the time of oviposition may influence plant cell fates and consequently the interpretation of the adaptive value of insect galls.


Subject(s)
Fabaceae/parasitology , Plant Leaves/parasitology , Plant Tumors/parasitology , Animals , Fabaceae/anatomy & histology , Fabaceae/classification , Host-Parasite Interactions , Insecta/physiology , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Time Factors
14.
Rev. biol. trop ; 57(1/2): 293-302, March-June 2009. ilus
Article in English | LILACS | ID: lil-637719

ABSTRACT

Gall inducing insects most frequently oviposit in young tissues because these tissues have higher metabolism and potential for differentiation. However, these insects may also successfully establish in mature tissues as was observed in the super-host Copaifera langsdorffii. Among C. langsdorffii gall morphotypes, one of the most common is a midrib gall induced by an undescribed species of Cecidomyiidae. Following this ‘host plant and gall-inducing insect’ model, we addressed two questions: 1) Do the age of the tissues alter the gall extended phenotype? 2) Do gall morphological and anatomical features influence the adaptive value of the galling insect? For anatomical and histometrical studies, transverse sections of young and mature, galled and ungalled samples were prepared. Galls in young leaflets presented higher potential for cell division and greater nutritive reserves, whereas galls in mature leaflets perhaps provide more protection against natural predators and desiccation. Host organ age at the time of oviposition may influence plant cell fates and consequently the interpretation of the adaptive value of insect galls. Rev. Biol. Trop. 57 (1-2): 293-302. Epub 2009 June 30.


Subject(s)
Animals , Fabaceae/parasitology , Plant Leaves/parasitology , Plant Tumors/parasitology , Fabaceae/anatomy & histology , Fabaceae/classification , Host-Parasite Interactions , Insecta/physiology , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...