Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
EBioMedicine ; 83: 104229, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36027872

ABSTRACT

BACKGROUND: Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. METHODS: We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. FINDINGS: Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. INTERPRETATION: Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments. FUNDING: CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.


Subject(s)
COVID-19 , Cytokines , Humans , Lung/pathology , SARS-CoV-2
3.
Intensive Care Med ; 47(2): 199-207, 2021 02.
Article in English | MEDLINE | ID: mdl-33392642

ABSTRACT

PURPOSE: This study was designed to evaluate the usefulness of lung ultrasound (LUS) imaging to characterize the progression and severity of lung damage in cases of COVID-19. METHODS: We employed a set of combined ultrasound parameters and histopathological images obtained simultaneously in 28 patients (15 women, 0.6-83 years) with fatal COVID-19 submitted to minimally invasive autopsies, with different times of disease evolution from initial symptoms to death (3-37 days, median 18 days). For each patient, we analysed eight post-mortem LUS parameters and the proportion of three histological patterns (normal lung, exudative diffuse alveolar damage [DAD] and fibroproliferative DAD) in eight different lung regions. The relationship between histopathological and post-mortem ultrasonographic findings was assessed using various statistical approaches. RESULTS: Statistically significant positive correlations were observed between fibroproliferative DAD and peripheral consolidation (coefficient 0.43, p = 0.02) and pulmonary consolidation (coefficient 0.51, p = 0.005). A model combining age, time of evolution, sex and ultrasound score predicted reasonably well (r = 0.66) the proportion of pulmonary parenchyma with fibroproliferative DAD. CONCLUSION: The present study adds information to previous studies related to the use of LUS as a tool to assess the severity of acute pulmonary damage. We provide a histological background that supports the concept that LUS can be used to characterize the progression and severity of lung damage in severe COVID-19.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Ultrasonography , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Child , Child, Preschool , Correlation of Data , Female , Humans , Infant , Lung/pathology , Male , Middle Aged , Young Adult
4.
Respir Res ; 22(1): 32, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514373

ABSTRACT

BACKGROUND: Pulmonary involvement in COVID-19 is characterized pathologically by diffuse alveolar damage (DAD) and thrombosis, leading to the clinical picture of Acute Respiratory Distress Syndrome. The direct action of SARS-CoV-2 in lung cells and the dysregulated immuno-coagulative pathways activated in ARDS influence pulmonary involvement in severe COVID, that might be modulated by disease duration and individual factors. In this study we assessed the proportions of different lung pathology patterns in severe COVID-19 patients along the disease evolution and individual characteristics. METHODS: We analysed lung tissue from 41 COVID-19 patients that died in the period March-June 2020 and were submitted to a minimally invasive autopsy. Eight pulmonary regions were sampled. Pulmonary pathologists analysed the H&E stained slides, performing semiquantitative scores on the following parameters: exudative, intermediate or advanced DAD, bronchopneumonia, alveolar haemorrhage, infarct (%), arteriolar (number) or capillary thrombosis (yes/no). Histopathological data were correlated with demographic-clinical variables and periods of symptoms-hospital stay. RESULTS: Patient´s age varied from 22 to 88 years (18f/23 m), with hospital admission varying from 0 to 40 days. All patients had different proportions of DAD in their biopsies. Ninety percent of the patients presented pulmonary microthrombosis. The proportion of exudative DAD was higher in the period 0-8 days of hospital admission till death, whereas advanced DAD was higher after 17 days of hospital admission. In the group of patients that died within eight days of hospital admission, elderly patients had less proportion of the exudative pattern and increased proportions of the intermediate patterns. Obese patients had lower proportion of advanced DAD pattern in their biopsies, and lower than patients with overweight. Clustering analysis showed that patterns of vascular lesions (microthrombosis, infarction) clustered together, but not the other patterns. The vascular pattern was not influenced by demographic or clinical parameters, including time of disease progression. CONCLUSION: Patients with severe COVID-19 present different proportions of DAD patterns over time, with advanced DAD being more prevalent after 17 days, which seems to be influenced by age and weight. Vascular involvement is present in a large proportion of patients, occurs early in disease progression, and does not change over time.


Subject(s)
COVID-19/pathology , Lung Injury/pathology , Lung/pathology , Adult , Age Factors , Aged , Aged, 80 and over , Autopsy , COVID-19/complications , Demography , Disease Progression , Female , Humans , Infarction/epidemiology , Infarction/pathology , Lung Injury/etiology , Male , Middle Aged , Pulmonary Alveoli/pathology , Thrombosis/etiology , Thrombosis/pathology , Young Adult
7.
Clinics (Sao Paulo) ; 75: e1373, 2020.
Article in English | MEDLINE | ID: mdl-31939560

ABSTRACT

OBJECTIVES: Chronic thromboembolic pulmonary hypertension (CTEPH) is a unique form of pulmonary hypertension (PH) that arises from obstruction of the pulmonary vessels by recanalized thromboembolic material. CTEPH has a wide range of radiologic presentations. Commonly, it presents as main pulmonary artery enlargement, peripheral vascular obstructions, bronchial artery dilations, and mosaic attenuation patterns. Nevertheless, other uncommon presentations have been described, such as lung cavities. These lesions may be solely related to chronic lung parenchyma ischemia but may also be a consequence of concomitant chronic infectious conditions. The objective of this study was to evaluate the different etiologies that cause lung cavities in CTEPH patients. METHODS: A retrospective data analysis of the medical records of CTEPH patients in a single reference PH center that contained or mentioned lung cavities was conducted between 2013 and 2016. RESULTS: Seven CTEPH patients with lung cavities were identified. The cavities had different sizes, locations, and wall thicknesses. In two patients, the cavities were attributed to pulmonary infarction; in 5 patients, an infectious etiology was identified. CONCLUSION: Despite the possibility of being solely associated with chronic lung parenchyma ischemia, most cases of lung cavities in CTEPH patients were associated with chronic granulomatous diseases, reinforcing the need for active investigation of infectious agents in this setting.


Subject(s)
Granulomatous Disease, Chronic , Hypertension, Pulmonary/diagnosis , Pulmonary Embolism/diagnosis , Thromboembolism/etiology , Angiography/methods , Anticoagulants/therapeutic use , Chronic Disease , Female , Granulomatous Disease, Chronic/pathology , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Lung/blood supply , Male , Perfusion Imaging , Pulmonary Embolism/complications , Pulmonary Embolism/therapy , Retrospective Studies , Tomography, X-Ray Computed/methods , Treatment Outcome
8.
Clinics ; 75: e1373, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055875

ABSTRACT

OBJECTIVES: Chronic thromboembolic pulmonary hypertension (CTEPH) is a unique form of pulmonary hypertension (PH) that arises from obstruction of the pulmonary vessels by recanalized thromboembolic material. CTEPH has a wide range of radiologic presentations. Commonly, it presents as main pulmonary artery enlargement, peripheral vascular obstructions, bronchial artery dilations, and mosaic attenuation patterns. Nevertheless, other uncommon presentations have been described, such as lung cavities. These lesions may be solely related to chronic lung parenchyma ischemia but may also be a consequence of concomitant chronic infectious conditions. The objective of this study was to evaluate the different etiologies that cause lung cavities in CTEPH patients. METHODS: A retrospective data analysis of the medical records of CTEPH patients in a single reference PH center that contained or mentioned lung cavities was conducted between 2013 and 2016. RESULTS: Seven CTEPH patients with lung cavities were identified. The cavities had different sizes, locations, and wall thicknesses. In two patients, the cavities were attributed to pulmonary infarction; in 5 patients, an infectious etiology was identified. CONCLUSION: Despite the possibility of being solely associated with chronic lung parenchyma ischemia, most cases of lung cavities in CTEPH patients were associated with chronic granulomatous diseases, reinforcing the need for active investigation of infectious agents in this setting.


Subject(s)
Humans , Male , Female , Pulmonary Embolism/diagnosis , Thromboembolism/etiology , Granulomatous Disease, Chronic/pathology , Hypertension, Pulmonary/diagnosis , Pulmonary Embolism/complications , Pulmonary Embolism/therapy , Angiography/methods , Tomography, X-Ray Computed/methods , Chronic Disease , Retrospective Studies , Treatment Outcome , Perfusion Imaging , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Lung/blood supply , Anticoagulants/therapeutic use
10.
Dig Dis Sci ; 52(12): 3448-54, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17394061

ABSTRACT

YHK has antioxidant properties, has a hypoglycemic effect, and may reduce plasma lipid levels. In this study, we examined the hepatic expression of PPAR-alpha and -gamma and MTP in ob/ob mice receiving or not receiving YHK. Ob/ob mice were assigned to receive oral YHK (20 mg/kg/day) fed solution (methionine/choline-deficient [MCD] diet+YHK group) or vehicle (MCD group) by gavage for 4 weeks. Liver fragments were collected for histologic examination and mRNA isolation. PPAR-alpha and -gamma and MTP gene expression was examined by RT-qPCR. YHK treatment was associated with NASH prevention, weight loss, and reduction of visceral fat and of serum concentrations of aminotransferases in comparison to the MCD group. YHK promoted an increment in PPAR-alpha and MTP and a decrement in PPAR-gamma mRNA contents. These findings suggest that modulation of PPAR-alpha and -gamma and MTP RNA expression may be implicated in the protective effect of YHK in experimental NASH, limiting hepatocyte lipid accumulation.


Subject(s)
Carrier Proteins/genetics , Fatty Liver/metabolism , Gene Expression/genetics , PPAR alpha/genetics , PPAR gamma/genetics , Plant Preparations/therapeutic use , RNA, Messenger/genetics , Animals , Carrier Proteins/biosynthesis , Carrier Proteins/drug effects , Disease Models, Animal , Disease Progression , Fatty Liver/drug therapy , Fatty Liver/genetics , Gene Expression/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mice , Mice, Obese , Microsomes, Liver , PPAR alpha/biosynthesis , PPAR alpha/drug effects , PPAR gamma/biosynthesis , PPAR gamma/drug effects , Phytotherapy/methods , Reverse Transcriptase Polymerase Chain Reaction , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...