Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015899

ABSTRACT

This work presents a novel Automated Machine Learning (AutoML) approach for Real-Time Fault Detection and Diagnosis (RT-FDD). The approach's particular characteristics are: it uses only data that are commonly available in industrial automation systems; it automates all ML processes without human intervention; a non-ML expert can deploy it; and it considers the behavior of cyclic sequential machines, combining discrete timed events and continuous variables as features. The capacity for fault detection is analyzed in two case studies, using data from a 3D machine simulation system with faulty and non-faulty conditions. The enhancement of the RT-FDD performance when the proposed approach is applied is proved with the Feature Importance, Confusion Matrix, and F1 Score analysis, reaching mean values of 85% and 100% in each case study. Finally, considering that faults are rare events, the sensitivity of the models to the number of faulty samples is analyzed.


Subject(s)
Algorithms , Machine Learning , Computer Simulation , Humans
2.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3251-3263, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33513115

ABSTRACT

Hybrid systems, which combine statistical and machine learning (ML) techniques using residual (error forecasting) modeling, have been highlighted in the literature due to their accuracy and ability to forecast time series with different characteristics. In these architectures, a crucial task is the proper modeling of the residuals since they may present random fluctuations, complex nonlinear patterns, and heteroscedastic behavior. Hence, the selection, specification, and training of one ML model to forecast the residuals are costly and challenging tasks since issues, such as underfitting, overfitting, and misspecification, can lead to a system with low accuracy or even deteriorate the linear forecast of the time series. This article proposes a hybrid system, named dynamic residual forecasting (DReF), that employs a modified dynamic selection (DS) algorithm to decide: the most suitable ML model to forecast a pattern of the residual series and if it is a promising candidate to increase the accuracy of the time series forecast from the linear combination. Thus, the DReF aims to reduce the uncertainty of the ML model selection and avoid the deterioration of the time series forecast. Furthermore, the proposed system searches for the most suitable parameters of the DS algorithm for each data set. In this article, the proposed method uses a pool of five ML models widely adopted in the literature: multilayer perceptron, support vector regression, radial basis function, long short-term memory, and convolutional neural network. An experimental evaluation was conducted using ten well-known time series. The results show that the DReF obtains superior results for the majority of the data sets compared with single and hybrid models of the literature.

3.
Sensors (Basel) ; 21(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884100

ABSTRACT

The employment of smart meters for energy consumption monitoring is essential for planning and management of power generation systems. In this context, forecasting energy consumption is a valuable asset for decision making, since it can improve the predictability of forthcoming demand to energy providers. In this work, we propose a data-driven ensemble that combines five single well-known models in the forecasting literature: a statistical linear autoregressive model and four artificial neural networks: (radial basis function, multilayer perceptron, extreme learning machines, and echo state networks). The proposed ensemble employs extreme learning machines as the combination model due to its simplicity, learning speed, and greater ability of generalization in comparison to other artificial neural networks. The experiments were conducted on real consumption data collected from a smart meter in a one-step-ahead forecasting scenario. The results using five different performance metrics demonstrate that our solution outperforms other statistical, machine learning, and ensembles models proposed in the literature.


Subject(s)
Machine Learning , Neural Networks, Computer , Forecasting , Linear Models , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...