Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 7: 762, 2019.
Article in English | MEDLINE | ID: mdl-31781544

ABSTRACT

Lawsone itself exhibits interesting biological activities, and its complexation with a metal center can improve the potency. In this context a cytotoxic Ru-complex, [Ru(law)(dppb)(bipy)] (law = lawsone, dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), named as CBLAU, was prepared as reported. In this work, NMR binding-target studies were performed to bring to light the most accessible interaction sites of this Ru-complex toward Calf-Thymus DNA (CT-DNA, used as a model), in a similar approach used for other metallic complexes with anti-cancer activity, such as cisplatin and carboplatin. Advanced and robust NMR binding-target studies, among them Saturation Transfer Difference (STD)-NMR and longitudinal relaxometry (T1), were explored. The 1H and 31P -NMR data indicate that the structure of Ru-complex remains preserved in the presence of CT-DNA, and some linewidth broadening is also observed for all the signals, pointing out some interaction. Looking at the binding efficiency, the T1 values are highly influenced by the formation of the CBLAU-DNA adduct, decreasing from 11.4 s (without DNA) to 1.4 s (with DNA), where the difference is bigger for the lawsone protons. Besides, the STD-NMR titration experiments revealed a stronger interaction (KD = 5.9 mM) for CBLAU-DNA in comparison to non-complexed lawsone-DNA (KD = 34.0 mM). The epitope map, obtained by STD-NMR, shows that aromatic protons from the complexed lawsone exhibits higher saturation transfer, in comparison to other Ru-ligands (DPPB and bipy), suggesting the supramolecular contact with CT-DNA takes place by the lawsone face of the Ru-complex, possibly by a spatial π-π stacking involving π-bonds on nucleic acids segments of the DNA chain and the naphthoquinone group.

2.
Arch Biochem Biophys ; 660: 156-167, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30389443

ABSTRACT

This paper describes on the interaction studies of carbonyl heterobimetallic compounds of Ru(II)/Fe(II) containing polypyridyl ligands, with general formula ct-[RuCl(CO)(N-N)(dppf)]PF6, N-N = 1,10-phenanthroline (phen) 5; dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) 6; dipyrido[3,2-a:2',3'-c]phenazine (dppz) 7; dipyrido[3,2-f:2',3'-h]quinoxalino[2,3-b]quinoxaline (dpqQX) 8 and dppf = 1,1'-bis(diphenylphosphino) ferrocene], with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA). Also, it describes the cellular viability assays of these complexes in tumorigenic and non-tumorigenic cell lines. The carbonyl complexes 5-8 and their respective precursors with formula cis-[RuCl2(N-N)(dppf)], N-N = phen (1), dpq (2), dppz (3) and dpqQX (4), were characterized by elemental analysis and spectroscopic techniques (FTIR, UV-vis, 1H and 31P{1H} NMR). Also, a cyclic voltammetry study was performed for all complexes. The crystal structure of the complex 3 is presented and discussed. Spectrofluorimetric titrations shows spontaneous and strong interaction of 5-8 with BSA, through a static quenching mechanism, resulting in binding constants in the order of 104-106 L mol-1, at 310 K. Viscosity measurements and circular dichroism spectra prompts interactions of 5-8 with ct-DNA via non-classical intercalations or by an electrostatic pathway. MTT assays in breast tumor cells MDA-MB-231 and in non-tumorigenic cells MCF-10A and V79-4 cell lines revealed IC50 values ranging from 0.19 to 1.11 µmol L-1, 1.07-3.18 µmol L-1 and 1.29-3.85 µmol L-1 respectively, for complexes 5-8.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Iron/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Pyridines/chemistry , Ruthenium/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Cricetinae , DNA/metabolism , Humans , Ligands , MCF-7 Cells , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/metabolism , Serum Albumin, Bovine/metabolism
3.
J Inorg Biochem ; 136: 33-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24727183

ABSTRACT

The present study describes the synthesis, characterization, antileishmanial and antiplasmodial activities of novel diimine/(2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), 4,4'-methylbipyridine (Me-bipy) and 4,4'-methoxybipyridine (MeO-bipy)/phosphine/ruthenium(II) complexes containing lapachol (Lap, 2-hydroxy-3-(3-33 methyl-2-buthenyl)-1,4-naphthoquinone) as bidentate ligand. The [Ru(Lap)(PPh3)2(bipy)]PF6 (1), [Ru(Lap)(PPh3)2(Me-bipy)]PF6 (2), [Ru(Lap)(PPh3)2(MeO-bipy)]PF6(3) and[Ru(Lap)(PPh3)2(phen)]PF6 (4) complexes, PPh3=triphenylphospine, were synthesized from the reactions of cis-[RuCl2(PPh3)2(X-bipy)] or cis-[RuCl2(PPh3)2(phen)], with lapachol. The [RuCl2(Lap)(dppb)] (5) [dppb=1,4-bis(diphenylphosphine)butane] was synthesized from the mer-[RuCl3(dppb)(H2O)] complex. The complexes were characterized by elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (31)P{(1)H} and (1)H NMR, and cyclic voltammetry. The Ru(III) complex, [RuCl2(Lap)(dppb)], was also characterized by the EPR technique. The structure of the complexes [Ru(Lap)(PPh3)2(bipy)]PF6 and [RuCl2(Lap)(dppb)] was elucidated by X-ray diffraction. The evaluation of the antiparasitic activities of the complexes against Leishmania amazonensis and Plasmodium falciparum demonstrated that lapachol-ruthenium complexes are more potent than the free lapachol. The [RuCl2(Lap)(dppb)] complex is the most potent and selective antiparasitic compound among the five new ruthenium complexes studied in this work, exhibiting an activity comparable to the reference drugs.


Subject(s)
Antimalarials/pharmacology , Coordination Complexes/pharmacology , Ruthenium/chemistry , Trypanocidal Agents/pharmacology , Animals , Antimalarials/chemical synthesis , Antimalarials/toxicity , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Leishmania/drug effects , Mice , Models, Molecular , Molecular Conformation , Naphthoquinones/chemistry , Plasmodium falciparum/drug effects , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...