Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Top Stroke Rehabil ; 30(7): 663-671, 2023 10.
Article in English | MEDLINE | ID: mdl-36196904

ABSTRACT

BACKGROUND: The understanding of human postural control has advanced with the introduction of optimization process modeling. These models, however, only provide control parameters, rather than analytical descriptors of optimization processes. Here, we use a newly developed direct (pattern) search algorithm to investigate changes in postural optimization process in poststroke individuals. OBJECTIVE: This cross-sectional study investigated the optimization properties of postural stability during upright standing in poststroke individuals. METHODS: Twenty-nine poststroke and 15 healthy age-matched individuals underwent posturography with a force platform while standing for 60 s for acquisition of center-of-pressure data. Poststroke individuals were grouped depending on their weight-bearing (WB) pattern and their balance capability assessed through Berg Balance Scale (BBS). The optimization properties of postural stability were computed assuming the minimization of postural sway as cost function. RESULTS: The asymmetric WB poststroke group showed larger convergence rate toward the local minimum of postural sway than the symmetric WB group. Additionally, the low-balance capability group exhibited smaller values for averaged local minima and global minimum of postural sway coordinates compared with high-balance capability group. Significant correlations were found for BBS and the local minima and global minimum (Pearson's r ranged 0.378-0.424, P < 0.05). CONCLUSIONS: In summary, the optimization properties describing postural dynamic stability, steadiness, and global reference are altered in poststroke individuals with asymmetric WB pattern and low-balance capability.


Subject(s)
Posture , Stroke , Humans , Cross-Sectional Studies , Stroke/complications , Standing Position , Postural Balance
2.
Front Hum Neurosci ; 10: 434, 2016.
Article in English | MEDLINE | ID: mdl-27625602

ABSTRACT

The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system.

3.
Front Hum Neurosci ; 8: 290, 2014.
Article in English | MEDLINE | ID: mdl-24847241

ABSTRACT

In this study we investigate to what extent the effects of motor imagery on postural sway are constrained by movement features and the subject's imagery ability. Twenty-three subjects were asked to imagine three movements using the kinesthetic modality: rising on tiptoes, whole-body forward reaching, and whole-body lateral reaching. After each task, subjects reported the level of imagery vividness and were subsequently grouped into a HIGH group (scores ≥3, "moderately intense" imagery) or a LOW group (scores ≤2, "mildly intense" imagery). An eyes closed trial was used as a control task. Center of gravity (COG) coordinates were collected, along with surface EMG of the deltoid (medial and anterior portion) and lateral gastrocnemius muscles. COG variability was quantified as the amount of fluctuations in position and velocity in the forward-backward and lateral directions. Changes in COG variability during motor imagery were observed only for the HIGH group. COG variability in the forward-backward direction was increased during the rising on tiptoes imagery, compared with the control task (p = 0.01) and the lateral reaching imagery (p = 0.02). Conversely, COG variability in the lateral direction was higher in rising on tiptoes and lateral reaching imagery than during the control task (p < 0.01); in addition, COG variability was higher during the lateral reaching imagery than in the forward reaching imagery (p = 0.02). EMG analysis revealed no effects of group (p > 0.08) or task (p > 0.46) for any of the tested muscles. In summary, motor imagery influences body sway dynamics in a task-dependent manner, and relies on the subject' imagery ability.

SELECTION OF CITATIONS
SEARCH DETAIL
...