Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trials ; 20(1): 215, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30975204

ABSTRACT

BACKGROUND: There are many comorbidities associated with Down syndrome (DS), including obstructive sleep apnea (OSA) and masticatory muscle alteration. Muscular hypotonia, in particular, of the masticatory and oropharyngeal muscles is one of the main characteristics of individuals with DS, resulting in impairments of speech, swallowing, and mastication in these individuals. In addition, total or partial obstruction of the airways during sleep can occur due to pharyngeal hypotonia, leading to snoring and to OSA. This progressive respiratory disorder is associated with a high risk of morbidity and mortality in individuals with DS. The aim of this research is to assess the therapeutic effects of surface neuromuscular electrical stimulation (NMES), the mastication apparatus (MA), and a mandibular advancement oral appliance (OAm) with an embedded thermosensitive microchip on the functions of masticatory muscles (bilateral masseter and temporal muscles), physiological sleep variables, and salivary parameters in adult patients with DS. METHODS: The patients with DS will be randomly selected and divided into three groups (DS-NMES, DS-MA, and DS-OAm) with a minimum of 10 patients in each group. A thermosensitive microchip will be embedded in the OAm to record its compliance. The therapeutic effects on masticatory muscle function will be investigated through electromyography, a caliper, and a force-transducer device; the sleep variables, in turn, will be evaluated by means of polysomnography. The physicochemical and microbiological properties of the saliva will also be analyzed, including the salivary flow, viscosity, buffer capacity, cortisol levels (susceptibility to psychological and/or physical stress), and Pseudomonas aeruginosa levels (risk of aspiration pneumonia) in these patients. The methods determined for this study will be carried out prior to and after 2 months of the recommended therapies. DISCUSSION: The primary outcomes would be the improvement and/or reestablishment of the function of masticatory muscles and the physiological sleep variables in this target public since individuals with DS commonly present generalized muscular hypotonia and dysfunction of the oropharyngeal musculature. As a secondary outcome indicator, the impact of the applied therapies (NMES, MA, and OAm) on the salivary microbiological and physicochemical properties in DS individuals will also be assessed. Furthermore, the compliance of OAm usage will be measured through a thermosensitive microchip. TRIAL REGISTRATION: Registro Brasileiro de Ensaios Clínicos, RBR-3qp5np . Registered on 20 February 2018.


Subject(s)
Down Syndrome/therapy , Electric Stimulation Therapy , Masticatory Muscles/physiopathology , Saliva/microbiology , Sleep/physiology , Adolescent , Adult , Down Syndrome/physiopathology , Electromyography , Humans , Hydrocortisone/analysis , Pseudomonas aeruginosa/isolation & purification , Saliva/chemistry , Sample Size , Young Adult
2.
J Mech Behav Biomed Mater ; 40: 168-177, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25241281

ABSTRACT

Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.


Subject(s)
Gamma Rays , Lung/cytology , Mechanical Phenomena , Sterilization , Animals , Biomechanical Phenomena , Dose-Response Relationship, Radiation , Lung/radiation effects , Male , Mice
3.
J Biomed Mater Res A ; 102(2): 413-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23533110

ABSTRACT

Lung bioengineering based on decellularized organ scaffolds is a potential alternative for transplantation. Freezing/thawing, a usual procedure in organ decellularization and storage could modify the mechanical properties of the lung scaffold and reduce the performance of the bioengineered lung when subjected to the physiological inflation-deflation breathing cycles. The aim of this study was to determine the effects of repeated freezing/thawing on the mechanical properties of decellularized lungs in the physiological pressure-volume regime associated with normal ventilation. Fifteen mice lungs (C57BL/6) were decellularized using a conventional protocol not involving organ freezing and based on sodium dodecyl sulfate detergent. Subsequently, the mechanical properties of the acellular lungs were measured before and after subjecting them to three consecutive cycles of freezing/thawing. The resistance (RL ) and elastance (EL ) of the decellularized lungs were computed by linear regression fitting of the recorded signals (tracheal pressure, flow, and volume) during mechanical ventilation. RL was not significantly modified by freezing-thawing: from 0.88 ± 0.37 to 0.90 ± 0.38 cmH2 O·s·mL(-1) (mean ± SE). EL slightly increased from 64.4 ± 11.1 to 73.0 ± 16.3 cmH2 O·mL(-1) after the three freeze-thaw cycles (p = 0.0013). In conclusion, the freezing/thawing process that is commonly used for both organ decellularization and storage induces only minor changes in the ventilation mechanical properties of the organ scaffold.


Subject(s)
Freezing , Lung/chemistry , Sodium Dodecyl Sulfate/chemistry , Tissue Scaffolds/chemistry , Animals , Female , Mice
4.
Arch Med Sci ; 6(5): 719-27, 2010 Oct.
Article in English | MEDLINE | ID: mdl-22419931

ABSTRACT

INTRODUCTION: Non-invasive ventilation may improve autonomic modulation and ventilatory parameters in severely disabled patients. The aim of the present study was to evaluate the physiological influence of acute treatment with different levels of continuous positive airway pressure (CPAP) on the autonomic balance of heart and respiratory responses in patients with stable chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). MATERIALS AND METHODS: A COPD group (n = 10), CHF group (n = 8) and healthy subjects (n = 10) were evaluated. The participants were randomized to receive three different levels of CPAP on the same day: sham ventilation (Sham), 5 cmH(2)0 (CPAP5) and 10 cmH(2)0 (CPAP10) for 10 min. Respiratory rate, end tidal carbon dioxide (E(T)CO(2)), peripheral oxygen saturation (SpO(2)), heart rate (HR), blood pressure and heart rate variability in the time and frequency domains were measured during spontaneous breathing and under the sham, CPAP5 and CPAP10 conditions. RESULTS: All groups experienced a reduction in E(T)CO(2) values during treatment with CPAP (p < 0.05). CPAP increased SpO(2) and HR in the COPD group (p < 0.05). The COPD group also had lower RMSSD values during treatment with different levels of CPAP when compared to the control group (p < 0.05). In the CHF group, CPAP5 and CPAP10 increased the SDNN value (p < 0.05). CPAP10 reduced the SDNN value in the COPD group (p < 0.05). CONCLUSION: The findings suggest that CPAP may cause improvements in the neural control of heart rate in patients with stable COPD and CHF. For each patient, the "best CPAP level" should be defined as the best respiratory response and autonomic balance.

SELECTION OF CITATIONS
SEARCH DETAIL
...