Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 24(18): 3972-3977, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27515718

ABSTRACT

In the present work, thirty-two hybrid compounds containing cycloalka[b]thiophene and indole moieties (TN5, TN5 1-7, TN6, TN6 1-7, TN7, TN7 1-7, TN8, TN8 1-7) were designed, synthesized and evaluated for their cytotoxic and antileishmanial activity against Leishmania amazonensis promastigotes. More than half of the compounds (18 compounds) exhibited significant antileishmanial activity (IC50 lower than 10.0µg/L), showing better performance than the reference drugs (tri- and penta-valent antimonials). The most active compounds were TN8-7, TN6-1 and TN7 with respective IC50 values of 2.1, 2.3 and 3.2µg/mL. Demonstrating that all of the compounds were less toxic than the reference drugs, even at the highest evaluated concentration (400µg/mL), no compound tested presented human erythrocyte cytotoxicity. Compound TN8-7's effectiveness against a trivalent antimony-resistant culture was demonstrated. It was observed that TN8-7's antileishmanial activity is associated with DNA fragmentation of L. amazonensis promastigotes. Chemometric studies (CPCA, PCA, and PLS) highlight intrinsic solubility/lipophilicity, and compound size and shape as closely related to activity. Our results suggest that hybrid cycloalka[b]thiophene-indole derivatives may be considered as lead compounds for further development of new drugs for the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Indoles/pharmacology , Leishmania mexicana/drug effects , Thiophenes/pharmacology , Antiprotozoal Agents/chemistry , DNA Fragmentation/drug effects , Drug Discovery , Humans , Indoles/chemistry , Inhibitory Concentration 50 , Leishmania mexicana/genetics , Leishmaniasis, Cutaneous/drug therapy , Structure-Activity Relationship , Thiophenes/chemistry
2.
Nat Prod Commun ; 7(1): 71-4, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22428250

ABSTRACT

The therapeutic potential of toxins has aroused great interest in the scientific community. Microbial resistance is a serious current public health problem, in part because of the wide use of antimicrobial drugs. Furthermore, there are several problems in the treatment of parasitic diseases such as leishmaniosis and Chagas' disease, including the low efficacy in some clinical phases of the diseases and the loss of effectiveness of benzonidazole in the chronic phase of Chagas' disease. In this context, the aim of this work was to study the antimicrobial and antiparasitic effects of Bothropoides lutzi total venom (BltTV). The venom exerted an antibacterial effect on S. aureus, with MIC=MLC=200 microg/mL. The inhibitory effects of BltTV on promastigote forms of Leishmania amazonensis and L. chagasi were assessed by counting of viable cells after incubation with BltTV. IC50 values of 234.6 microg/mL and 61.2 microg/mL, were obtained, respectively. Furthermore, the venom repressed epimastigote forms of Trypanosoma cruzi growth. Finally, BltTV was verified to affect murine peritoneal macrophages, causing a cytotoxic effect at the highest concentrations (100 and 50 microg/mL). In conclusion, Bothropoides lutzi venom demonstrated antibacterial and antiparasite effects, suggesting that the venom contains some substance(s) of therapeutic value.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/pharmacology , Bothrops , Crotalid Venoms/pharmacology , Animals , Female , Leishmania/drug effects , Mice
3.
Eur J Med Chem ; 44(4): 1726-30, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18448204

ABSTRACT

We described a very efficient procedure to prepare seven aromatic compounds (1-7), a new class of antileishmanial substances, through Baylis-Hillman reaction (BHR). With one, all the Baylis-Hillman adducts were prepared in quantitative yields by reaction of the corresponding aromatic aldehydes in acrylonitrile at 0 degrees C in only 10-40min reaction time. We present our results about the toxicities of these compounds evaluated on the microcrustaceous Artemia salina Leach. and against promastigote Leishmania chagasi. All substances evaluated in this work have showed high bioactivity. The 3-hydroxy-2-methylene-3-(4-bromopheny)propanenitrile (4) (LC(50)=30.9 microg/mL on A. salina; IC(50)=25.2 microM on L. chagasi) was the most active compound evaluated on A. salina Leach. and on promastigote L. chagasi. The 2-[hydroxy(pyridin-4-yl)methyl]acrylonitrile (7) (LC(50)=30.9 microg/mL on A. salina Leach.; IC(50)=4.8 microg/mL on L. chagasi) was also a very active substance evaluated in this work on promastigote L. chagasi.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Artemia/drug effects , Leishmania/drug effects , Organic Chemicals/chemical synthesis , Organic Chemicals/pharmacology , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Inhibitory Concentration 50 , Organic Chemicals/chemistry , Organic Chemicals/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...