Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 7(7): e41553, 2012.
Article in English | MEDLINE | ID: mdl-22911812

ABSTRACT

Transcriptional activator-like (TAL) effectors of plant pathogenic bacteria function as transcription factors in plant cells. However, how TAL effectors control transcription in the host is presently unknown. Previously, we showed that TAL effectors of the citrus canker pathogen Xanthomonas citri, named PthAs, targeted the citrus protein complex comprising the thioredoxin CsTdx, ubiquitin-conjugating enzymes CsUev/Ubc13 and cyclophilin CsCyp. Here we show that CsCyp complements the function of Cpr1 and Ess1, two yeast cyclophilins that regulate transcription by the isomerization of proline residues of the regulatory C-terminal domain (CTD) of RNA polymerase II. We also demonstrate that CsCyp, CsTdx, CsUev and four PthA variants interact with the citrus CTD and that CsCyp co-immunoprecipitate with the CTD in citrus cell extracts and with PthA2 transiently expressed in sweet orange epicotyls. The interactions of CsCyp with the CTD and PthA2 were inhibited by cyclosporin A (CsA), a cyclophilin inhibitor. Moreover, we present evidence that PthA2 inhibits the peptidyl-prolyl cis-trans isomerase (PPIase) activity of CsCyp in a similar fashion as CsA, and that silencing of CsCyp, as well as treatments with CsA, enhance canker lesions in X. citri-infected leaves. Given that CsCyp appears to function as a negative regulator of cell growth and that Ess1 negatively regulates transcription elongation in yeast, we propose that PthAs activate host transcription by inhibiting the PPIase activity of CsCyp on the CTD.


Subject(s)
Bacterial Proteins/metabolism , Cyclophilins/antagonists & inhibitors , Cyclophilins/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Cell Nucleus/metabolism , Citrus/enzymology , Citrus/microbiology , Gene Silencing , Genetic Complementation Test , Models, Biological , Mutation/genetics , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Thioredoxins/metabolism , Xanthomonas/physiology
2.
Mol Plant Pathol ; 11(5): 663-75, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20696004

ABSTRACT

Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Deltaubc13 and Deltamms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.


Subject(s)
Bacterial Proteins/metabolism , Cell Nucleus/metabolism , Citrus/metabolism , DNA Repair , Plant Proteins/metabolism , Protein Folding , Ubiquitination , Active Transport, Cell Nucleus , Bacterial Proteins/chemistry , Citrus/cytology , Leucine-Rich Repeat Proteins , Lysine/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Proteins/metabolism , Nicotiana/cytology , Nicotiana/metabolism , Transcription Activator-Like Effectors
3.
Plant Cell Rep ; 28(3): 387-95, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19048258

ABSTRACT

An improved method for the Agrobacterium infiltration of epicotyl segments of 'Pineapple' sweet orange [Citrus sinensis (L.) Osbeck] and 'Swingle' citrumelo [Citrus paradisi Macf. X Poncirus trifoliata (L.) Raf.] was developed in order to increase transformation frequency. Sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum infiltration, and a combination of the two procedures were compared with conventional Agrobacterium-mediated inoculation method ('dipping' method). It was observed that the morphogenic potential of the epicotyl segments decreased as the duration of SAAT and vacuum treatments increased. Transient GUS expression was not affected by the different SAAT treatments, but it was significantly enhanced by the vacuum infiltration treatments. The highest transformation efficiencies were obtained when the explants were subjected to a combination of SAAT for 2 s followed by 10 min of vacuum infiltration. PCR and Southern blot analysis of the uidA gene were used to confirm the integration of the transgenes. The transformation frequencies achieved in this study (8.4% for 'Pineapple' sweet orange and 11.2% for 'Swingle' citrumelo) are the highest ones reported for both cultivars.


Subject(s)
Citrus/genetics , Gene Transfer Techniques , Plants, Genetically Modified/genetics , Rhizobium/genetics , Sonication , Transformation, Genetic , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL