Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(17): 3291-3299, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35442688

ABSTRACT

It is well reported in the literature that caffeine, the most consumed alkaloid around the world, enhances the anticancer effects of the drug cisplatin by inhibiting DNA repair by the cellular machinery. Here, we perform single-molecule force spectroscopy assays with optical tweezers to show that caffeine enhances the toxicity not only of cisplatin but also of various different platinum-based drugs already at the molecular level, using samples containing only double-stranded (ds)DNA, platinum drugs, and the alkaloid in a simple phosphate buffer, that is, completely out of the complex environment found inside real living cells. In fact, our results show that caffeine acts as an allosteric catalyst which increases the effective equilibrium binding constant between DNA and the platinum drugs, also interfering in the cooperativity of the binding reactions. To the best of our knowledge, this is the first time that such a property of caffeine was demonstrated and characterized from a pure physicochemical perspective, outside the cellular environment. Thus, the present work provides new insights into the use of this alkaloid for current chemotherapeutic applications.


Subject(s)
Antineoplastic Agents , Cisplatin , Antineoplastic Agents/chemistry , Caffeine/pharmacology , Cisplatin/pharmacology , DNA/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...