Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Announc ; 2(1)2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24435874

ABSTRACT

Here, we describe the draft genome sequences of two Xylella fastidiosa strains: Xf6c and Xf32, which have been obtained from infected coffee plants in Brazil, and are associated with the disease known as coffee leaf scorch (CLS).

2.
Mol Genet Genomics ; 276(5): 450-63, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16924544

ABSTRACT

The dimorphic pathogenic fungus Paracoccidioides brasiliensis can grow as a prototroph for organic sulfur as a mycelial (non-pathogenic) form, but it is unable to assimilate inorganic sulfur as a yeast (pathogenic) form. Temperature and the inability to assimilate inorganic sulfur are the single conditions known to affect P. brasiliensis mycelium-to-yeast (M-Y) dimorphic transition. For a comprehensive evaluation of genes that have their expression modulated during the M-Y transition in different culture media, we performed a large-scale analysis of gene expression using a microarray hybridization approach. The results of the present work demonstrate the use of microarray hybridization analysis to examine gene expression during the M-Y transition in minimal medium and compare these results with the M-Y transition in complete medium. Our results showed that about 95% of the genes in our microarray are mainly responding to the temperature trigger, independently of the media where the M-Y transition took place. As a preliminary step to understand the inorganic sulfur inability in P. brasiliensis yeast form, we decided to characterize the mRNA accumulation of several genes involved in different aspects of both organic and inorganic sulfur assimilation. Our results suggest that although P. brasiliensis cannot use inorganic sulfur as a single sulfur source to initiate both M-Y transition and Y growth, the fungus can somehow use both organic and inorganic pathways during these growth processes.


Subject(s)
Paracoccidioides/genetics , Base Sequence , Gene Expression Regulation, Fungal , Genetic Complementation Test , Humans , Paracoccidioidomycosis/genetics , Restriction Mapping , Sulfur/metabolism , Transcription, Genetic
3.
Mol Biochem Parasitol ; 146(2): 151-62, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16442642

ABSTRACT

Old yellow enzyme (OYE) is a NAD(P)H flavin oxidoreductase that in Trypanosoma cruzi (TcOYE) catalyzes prostaglandin PGF2alpha synthesis and reduction of some trypanocidal drugs. We performed DNA microarray analysis and it revealed that the levels of transcription of the TcOYE gene were six-fold lower in a T. cruzi population with in vitro-induced resistance to benznidazole (BZ) (17LER) than in the wild-type (17WTS). Further we investigated the TcOYE levels in 15 T. cruzi strains and clones that were either susceptible or naturally resistant to BZ and nifurtimox, or had in vivo-selected resistance to BZ. Northern blot and real-time RT-PCR analyses confirmed our finding that TcOYE transcription levels were lower in 17LER than in 17WTS. In contrast, we detected no differences in TcOYE transcription levels between other T. cruzi samples. All T. cruzi strains contained four copies of TcOYE gene, except 17LER that contained only one. A 42kDa TcOYE protein was detected in all T. cruzi strains tested. The expression of this protein was similar for all samples, with the exception of 17LER for which the protein was nearly seven-fold less expressed. The chromosomal location of the TcOYE gene and the polymorphisms detected in TcOYE nucleotide and amino acid sequences of the T. cruzi strains are associated with the zymodeme but not with drug-resistance phenotype. Our data show that one of the mechanisms conferring in vitro-induced BZ resistance to T. cruzi correlates with deletion of copies of the TcOYE gene. In contrast, the in vivo and natural resistance to BZ are mediated by different mechanisms.


Subject(s)
Drug Resistance, Fungal/genetics , Gene Deletion , NADPH Dehydrogenase/genetics , Nitroimidazoles/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Animals , Antifungal Agents/pharmacology , Blotting, Northern , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungal Proteins/analysis , Gene Dosage , Gene Expression Profiling , Molecular Sequence Data , Molecular Weight , Nifurtimox/pharmacology , Oligonucleotide Array Sequence Analysis , Polymorphism, Genetic , RNA, Fungal/analysis , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology
4.
FEMS Microbiol Lett ; 237(2): 341-53, 2004 Aug 15.
Article in English | MEDLINE | ID: mdl-15321682

ABSTRACT

A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.


Subject(s)
Biofilms/growth & development , Citrus sinensis/microbiology , Genes, Bacterial , Xylella/genetics , Xylella/pathogenicity , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Xylella/metabolism , Xylella/physiology
5.
Genome Res ; 13(12): 2725-35, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14613979

ABSTRACT

To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged.


Subject(s)
Computational Biology/methods , DNA, Complementary/analysis , DNA, Complementary/physiology , DNA, Plant/analysis , DNA, Plant/physiology , Expressed Sequence Tags , Saccharum/genetics , Saccharum/physiology , Computational Biology/statistics & numerical data , DNA, Complementary/classification , DNA, Plant/classification , Gene Expression Regulation, Plant , Gene Library , Molecular Sequence Data , Organ Specificity/genetics , Peptides/classification , Peptides/genetics , Peptides/physiology , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/physiology , Polymorphism, Genetic/genetics , Protein Structure, Tertiary/genetics , Saccharum/growth & development , Sequence Analysis, DNA/methods , Signal Transduction/genetics
6.
Mol Plant Microbe Interact ; 16(10): 867-75, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14558688

ABSTRACT

Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.


Subject(s)
Plant Diseases/microbiology , Xylella/genetics , Xylella/pathogenicity , Base Sequence , Citrus sinensis/microbiology , DNA Primers/genetics , DNA, Bacterial/genetics , Gene Expression Profiling , Genes, Bacterial , Oligonucleotide Array Sequence Analysis , Plants, Edible/microbiology , Reverse Transcriptase Polymerase Chain Reaction , Vinca/microbiology , Virulence/genetics , Xylella/growth & development
7.
Eukaryot Cell ; 2(1): 34-48, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12582121

ABSTRACT

Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of the prevalent systemic mycosis in Latin America, paracoccidioidomycosis. We present here a survey of expressed genes in the yeast pathogenic phase of P. brasiliensis. We obtained 13,490 expressed sequence tags from both 5' and 3' ends. Clustering analysis yielded the partial sequences of 4,692 expressed genes that were functionally classified by similarity to known genes. We have identified several Candida albicans virulence and pathogenicity homologues in P. brasiliensis. Furthermore, we have analyzed the expression of some of these genes during the dimorphic yeast-mycelium-yeast transition by real-time quantitative reverse transcription-PCR. Clustering analysis of the mycelium-yeast transition revealed three groups: (i) RBT, hydrophobin, and isocitrate lyase; (ii) malate dehydrogenase, contigs Pb1067 and Pb1145, GPI, and alternative oxidase; and (iii) ubiquitin, delta-9-desaturase, HSP70, HSP82, and HSP104. The first two groups displayed high mRNA expression in the mycelial phase, whereas the third group showed higher mRNA expression in the yeast phase. Our results suggest the possible conservation of pathogenicity and virulence mechanisms among fungi, expand considerably gene identification in P. brasiliensis, and provide a broader basis for further progress in understanding its biological peculiarities.


Subject(s)
Candida albicans/genetics , Candidiasis/genetics , Expressed Sequence Tags , Gene Expression Regulation, Fungal/genetics , Genome, Fungal , Paracoccidioides/genetics , Paracoccidioidomycosis/genetics , Base Sequence/genetics , Candida albicans/enzymology , Candida albicans/pathogenicity , Candidiasis/enzymology , Candidiasis/physiopathology , DNA, Complementary/analysis , DNA, Complementary/genetics , Enzymes/biosynthesis , Enzymes/genetics , Gene Expression Regulation, Enzymologic/genetics , Humans , Mycelium/enzymology , Mycelium/genetics , Mycelium/growth & development , Paracoccidioides/enzymology , Paracoccidioides/pathogenicity , Paracoccidioidomycosis/enzymology , Paracoccidioidomycosis/physiopathology , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...