Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 80(3): 488-496, 2017 03.
Article in English | MEDLINE | ID: mdl-28207310

ABSTRACT

The microbiological quality of oysters reflects the microbiological quality of their habitats because they are filter feeders. The objective of this study was to assess the bacterial composition of the edible oyster Crassostrea rhizophorae in urban and preserved estuaries. Particularly, we assessed the presence of pathogenic bacteria, investigated antibiotic susceptibility in bacterial isolates, and quantified ß-lactam antibiotic resistance genes (blaTEM, blaSHV, and blaKPC) via quantitative PCR of oyster DNA. Our results detected total coliforms, Escherichia coli , and enterobacteria in the oysters from urban estuaries, which is indicative of poor water quality. In addition, our detection of the eaeA and stxA2 virulence genes in 16.7% of E. coli isolates from oysters from this region suggests the presence of multiantibiotic-resistant enteropathogenic and enterohemorrhagic E. coli strains. During periods of low precipitation, increased contamination by E. coli (in winter) and Vibrio parahaemolyticus (in autumn) was observed. In contrast, cultivated oysters inhabiting monitored farms in preserved areas had low levels of bacterial contamination, emphasizing that oyster culture monitoring enhances food quality and makes oysters fit for human consumption. Distinct antibiotic resistance profiles were observed in bacteria isolated from oysters collected from different areas, including resistance to ß-lactam antibiotics. The presence of the blaTEM gene in 91.3% of oyster samples indicated that microorganisms in estuarine water conferred the capability to produce ß-lactamase. To our knowledge, this is the first study to directly quantify and detect ß-lactam antibiotic resistance genes in oysters. We believe our study provides baseline data for bacterial dynamics in estuarine oysters; such knowledge contributes to developing risk assessments to determine the associated hazards and consequences of consuming oysters from aquatic environments containing pathogenic bacteria that may possess antibiotic resistance genes.


Subject(s)
Crassostrea/microbiology , beta-Lactams , Animals , Escherichia coli/isolation & purification , Humans , Prevalence , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL
...