Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 104(2): e3923, 2023 02.
Article in English | MEDLINE | ID: mdl-36428233

ABSTRACT

Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications.


Subject(s)
Ecosystem , Tracheophyta , Humans , Plants , Biological Evolution
2.
Article in English | MEDLINE | ID: mdl-35311272

ABSTRACT

Impedimetric wearable sensors are a promising strategy for determining the loss of water content (LWC) from leaves because they can afford on-site and nondestructive quantification of cellular water from a single measurement. Because the water content is a key marker of leaf health, monitoring of the LWC can lend key insights into daily practice in precision agriculture, toxicity studies, and the development of agricultural inputs. Ongoing challenges with this monitoring are the on-leaf adhesion, compatibility, scalability, and reproducibility of the electrodes, especially when subjected to long-term measurements. This paper introduces a set of sensing material, technological, and data processing solutions that overwhelm such obstacles. Mass-production-suitable electrodes consisting of stand-alone Ni films obtained by well-established microfabrication methods or ecofriendly pyrolyzed paper enabled reproducible determination of the LWC from soy leaves with optimized sensibilities of 27.0 (Ni) and 17.5 kΩ %-1 (paper). The freestanding design of the Ni electrodes was further key to delivering high on-leaf adhesion and long-term compatibility. Their impedances remained unchanged under the action of wind at velocities of up to 2.00 m s-1, whereas X-ray nanoprobe fluorescence assays allowed us to confirm the Ni sensor compatibility by the monitoring of the soy leaf health in an electrode-exposed area. Both electrodes operated through direct transfer of the conductive materials on hairy soy leaves using an ordinary adhesive tape. We used a hand-held and low-power potentiostat with wireless connection to a smartphone to determine the LWC over 24 h. Impressively, a machine-learning model was able to convert the sensing responses into a simple mathematical equation that gauged the impairments on the water content at two temperatures (30 and 20 °C) with reduced root-mean-square errors (0.1% up to 0.3%). These data suggest broad applicability of the platform by enabling direct determination of the LWC from leaves even at variable temperatures. Overall, our findings may help to pave the way for translating "sense-act" technologies into practice toward the on-site and remote investigation of plant drought stress. These platforms can provide key information for aiding efficient data-driven management and guiding decision-making steps.

3.
Sci Rep ; 11(1): 23671, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880305

ABSTRACT

Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.

4.
ACS Sens ; 5(7): 1864-1871, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32597643

ABSTRACT

Extracellular vesicles (EVs) are a frontier class of circulating biomarkers for the diagnosis and prognosis of different diseases. These lipid structures afford various biomarkers such as the concentrations of the EVs (CV) themselves and carried proteins (CP). However, simple, high-throughput, and accurate determination of these targets remains a key challenge. Herein, we address the simultaneous monitoring of CV and CP from a single impedance spectrum without using recognizing elements by combining a multidimensional sensor and machine learning models. This multidetermination is essential for diagnostic accuracy because of the heterogeneous composition of EVs and their molecular cargoes both within the tumor itself and among patients. Pencil HB cores acting as electric double-layer capacitors were integrated into a scalable microfluidic device, whereas supervised models provided accurate predictions, even from a small number of training samples. User-friendly measurements were performed with sample-to-answer data processing on a smartphone. This new platform further showed the highest throughput when compared with the techniques described in the literature to quantify EVs biomarkers. Our results shed light on a method with the ability to determine multiple EVs biomarkers in a simple and fast way, providing a promising platform to translate biofluid-based diagnostics into clinical workflows.


Subject(s)
Extracellular Vesicles , Lab-On-A-Chip Devices , Machine Learning , Neoplasms , Biomarkers , Humans
5.
Anal Chem ; 90(21): 12377-12384, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30222327

ABSTRACT

This technical note describes a new microfluidic sensor that combines low-cost (USD $0.97) with rapid fabrication and user-friendly, fast, sensitive, and accurate quantification of a breast cancer biomarker. The electrodes consisted of cost-effective bare stainless-steel capillaries, whose mass production is already well-established. These capillaries were used as received, without any surface modification. Microfluidic chips containing electrical double-layer capillary capacitors (µEDLC) were obtained by a cleanroom-free prototyping that allows the fabrication of dozens to hundreds of chips in 1 h. This sensor provided the successful quantification of CA 15-3, a biomarker protein for breast cancer, in serum samples from cancer patients. Antibody-anchored magnetic beads were utilized for immunocapture of the marker, and then, water was added to dilute the protein. Next, the CA 15-3 detection (<2 min) was made without using redox probes, antibody on electrode (sandwich immunoassay), or signal amplification strategies. In addition, the capacitance tests eliminated external pumping systems and precise volumetric sampling steps, as well as presented low sample volume (5 µL) and high sensitivity using bare capillaries in a new design for double-layer capacitors. The achieved limit-of-detection (92.0 µU mL-1) is lower than that of most methods reported in the literature for CA 15-3, which are based on nanostructured electrodes. The data shown in this technical note support the potential of the µEDLC toward breast cancer diagnosis even at early stages. We believe that accurate analyses using a simple sample pretreatment such as magnetic field-assisted immunocapture and cost-effective bare electrodes can be extended to quantify other cancer biomarkers and even biomolecules by changing the biorecognition element.


Subject(s)
Biomarkers, Tumor/analysis , Biosensing Techniques/economics , Breast Neoplasms/diagnostic imaging , Electrochemical Techniques/economics , Microfluidic Analytical Techniques/economics , Mucin-1/analysis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrodes , Female , Humans , Microfluidic Analytical Techniques/instrumentation
6.
ACS Appl Mater Interfaces ; 9(33): 27433-27440, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28742317

ABSTRACT

Breast cancer is the most common cancer in women worldwide. The detection of biomarkers has played a significant role in the early diagnosis and prognosis of breast cancer. Herein, we describe the construction of a disposable microfluidic immunoarray device (DµID) for the rapid and low-cost detection of CA15-3 (carbohydrate antigen 15-3), a protein biomarker for breast cancer. The DµID was constructed using a simple and rapid prototyping technique and was applied to detect CA15-3 in cancer patients. The DµID construction was based on the use of a double-sided adhesive card with a microfluidic channel and a screen-printed array with 8 electrodes. Both the immunoarray and microfluidic channel were designed using an inexpensive home cutter printer and using low-cost materials. The immunoarray was modified using the layer-by-layer technique aiming at immobilizing the primary antibody. For the biomarker detection, magnetic particles (MPs) modified with polyclonal antibodies and peroxidase enzymes were used as a strategy for capture, separation, and preconcentration of the biomarker, in addition to amplification of the electroanalytical signal. The preconcentration and amplification strategies integrated with the nanostructured immunosensors of the DµID meaningfully contributed toward the detection of CA15-3 with a limit of detection (LoD) of 6 µU mL-1, requiring as low as 2 µL of serum samples for 8 simultaneous detections. The obtained LoD was 1200 times lower compared to those of other immunosensors previously reported in the literature. The DµID was applied for the detection of CA15-3 in real samples of breast cancer patients and was found to present an excellent correlation with the well-established commercial electrochemiluminescence immunoassay. The association of the DµID with nanostructured surfaces and analyte capturing with bioconjugated paramagnetic particles is essentially a promising breakthrough for the low-cost and accurate detection of cancer biomarkers.


Subject(s)
Microfluidics , Biomarkers, Tumor , Biosensing Techniques , Humans , Immunoassay , Lab-On-A-Chip Devices , Limit of Detection
7.
Anal Chim Acta ; 957: 40-46, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28107832

ABSTRACT

This paper describes the fabrication of 2D and 3D microfluidic paper-based analytical devices (µPADs) for monitoring glucose, total protein, and nitrite in blood serum and artificial urine. A new method of cutting and sealing filter paper to construct µPADs was demonstrated. Using an inexpensive home cutter printer soft cellulose-based filter paper was easily and precisely cut to produce pattern hydrophilic microchannels. 2D and 3D µPADs were designed with three detection zones each for the colorimetric detection of the analytes. A small volume of samples was added to the µPADs, which was photographed after 15 min using a digital camera. Both µPADs presented an excellent analytical performance for all analytes. The 2D device was applied in artificial urine samples and reached limits of detection (LODs) of 0.54 mM, 5.19 µM, and 2.34 µM for glucose, protein, and nitrite, respectively. The corresponding LODs of the 3D device applied for detecting the same analytes in artificial blood serum were 0.44 mM, 1.26 µM, and 4.35 µM.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Paper , Glucose/analysis , Humans , Hydrophobic and Hydrophilic Interactions , Nitrites/analysis , Proteins/analysis , Urine/chemistry
8.
Pharmacol Biochem Behav ; 79(3): 499-506, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15582021

ABSTRACT

Partial sleep deprivation is clinically associated with fatigue, depressive symptoms and reduced memory. Previously, it has been demonstrated that venlafaxine, an atypical antidepressant, increases the levels of noradrenaline and serotonin in rat hippocampus. The aim of this study was to evaluate the effects of venlafaxine on depression, anxiety, locomotor activity and memory in a model of REM sleep (REMs) deprivation in rats. We have also studied the influence of venlafaxine on monoamine levels in the striatum. Six groups of animals (N=20 each) were treated with saline or venlafaxine (1 or 10 mg/kg) during 10 days, submitted or not to REMs deprivation and studied with the forced swimming test of Porsolt (STP), plus-maze, passive avoidance and open-field tests right after sleep deprivation. Animals were also studied for passive avoidance 24 h later (rebound period). Brain samples for monoamine measurements were collected either immediately after REMs deprivation or after 24 h. Both REMs deprivation and venlafaxine showed an antidepressant effect. An anxiolytic effect was also observed after REMs deprivation. Previous treatment with venlafaxine blocked the antidepressant and anxiolytic effects of REMs deprivation. REMs deprivation alone and treatment with venlafaxine 10 mg/kg increased locomotor activity, and this effect was inhibited by venlafaxine in REMs deprived rats. Both venlafaxine treatment and REMs deprivation induced weight loss. Venlafaxine treatment, but not REMs deprivation, induced an increase in striatal dopamine (DA) levels. The combination of REMs deprivation and venlafaxine treatment was associated with an increase in serotonin turnover 24 h after rebound sleep. In this study, venlafaxine treatment hindered most behavioral effects of REMs deprivation and was associated with an interference on dopamine and serotonin systems in the striatum.


Subject(s)
Body Weight/drug effects , Corpus Striatum/drug effects , Cyclohexanols/pharmacology , Motor Activity/drug effects , Sleep Deprivation/metabolism , Animals , Body Weight/physiology , Corpus Striatum/metabolism , Cyclohexanols/therapeutic use , Female , Immobilization/physiology , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Memory/physiology , Motor Activity/physiology , Rats , Rats, Wistar , Sleep Deprivation/drug therapy , Venlafaxine Hydrochloride
SELECTION OF CITATIONS
SEARCH DETAIL
...