Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023892

ABSTRACT

The study of bacterial interaction between Streptococcus mutans and Actinomyces naeslundii may disclose important features of biofilm interspecies relationships. The aim of this study was to characterize-with an emphasis on biofilm formation and composition and metabolic activity-single- and dual-species biofilms of S. mutans or A. naeslundii, and to use a drip flow reactor (DFR) to evaluate biofilm stress responses to 0.2% chlorhexidine diacetate (CHX). Single- and dual-species biofilms were grown for 24 h. The following factors were evaluated: cell viability, biomass and total proteins in the extracellular matrix, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide-"XTT"-reduction and lactic acid production. To evaluate stress response, biofilms were grown in DFR. Biofilms were treated with CHX or 0.9% sodium chloride (NaCl; control). Biofilms were plated for viability assessment. Confocal laser-scanning microscopy (CLSM) was also performed. Data analysis was carried out at 5% significance level. S. mutans viability and lactic acid production in dual-species biofilms were significantly reduced. S. mutans showed a higher resistance to CHX in dual-species biofilms. Total protein content, biomass and XTT reduction showed no significant differences between single- and dual-species biofilms. CLSM images showed the formation of large clusters in dual-species biofilms. In conclusion, dual-species biofilms reduced S. mutans viability and lactic acid production and increased S. mutans' resistance to chlorhexidine.

SELECTION OF CITATIONS
SEARCH DETAIL
...