Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703344

ABSTRACT

Major depressive disorder (MDD) is a severe disorder that causes enormous loss of quality of life, and among the factors underlying MDD is stress in maternal deprivation (MD). In addition, classic pharmacotherapy has presented severe adverse effects. Centella asiatica (C. asiatica) demonstrates a potential neuroprotective effect but has not yet been evaluated in MD models. This study aimed to evaluate the effect of C. asiatica extract and the active compound madecassic acid on possible depressive-like behavior, inflammation, and oxidative stress in the hippocampus and serum of young rats submitted to MD in the first days of life. Rats (after the first day of birth) were separated from the mother for 3 h a day for 10 days. When adults, these animals were divided into groups and submitted to treatment for 14 days. After subjecting the animals to protocols of locomotor activity in the open field and behavioral despair in the forced swimming test, researchers then euthanized the animals. The hippocampus and serum were collected and analyzed for the inflammatory cytokines and oxidative markers. The C. asiatica extract and active compound reversed or reduced depressive-like behaviors, inflammation in the hippocampus, and oxidative stress in serum and hippocampus. These results suggest that C. asiatica and madecassic acid have potential antidepressant action, at least partially, through anti-inflammatory and antioxidant profiles.

2.
Adv Exp Med Biol ; 1411: 163-190, 2023.
Article in English | MEDLINE | ID: mdl-36949310

ABSTRACT

Major depressive disorder (MDD) is one of the most prevalent disorders and causes severe damage to people's quality of life. Lifelong stress is one of the major villains in triggering MDD. Studies have shown that both stress and MDD, especially the more severe conditions of the disorder, are associated with inflammation and neuroinflammation and the relationship to an imbalance in tryptophan metabolism towards the kynurenine pathway (KP) through the enzymes indoleamine-2,3-dioxygenase (IDO), which is mainly stimulated by pro-inflammatory cytokines and tryptophan-2,3-dioxygenase (TDO) which is activated primarily by glucocorticoids. Considering that several pathophysiological mechanisms of MDD underlie or interact with biological processes from KP metabolites, this chapter addresses and discusses the function of these mechanisms. Activities triggered by stress and the hypothalamic-pituitary-adrenal (HPA) axis and immune and inflammatory processes, in addition to epigenetic phenomena and the gut-brain axis (GBA), are addressed. Finally, studies on the function and mechanisms of physical exercise in the KP metabolism and MDD are pointed out and discussed.


Subject(s)
Depressive Disorder, Major , Dioxygenases , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Quality of Life , Inflammation/metabolism
3.
Rev Neurosci ; 33(3): 227-255, 2022 04 26.
Article in English | MEDLINE | ID: mdl-34388328

ABSTRACT

Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.


Subject(s)
Depressive Disorder, Major , Telomerase , Aging/genetics , Animals , Depressive Disorder, Major/genetics , Depressive Disorder, Major/therapy , Humans , Pituitary-Adrenal System/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
4.
J Transl Med ; 19(1): 3, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407612

ABSTRACT

BACKGROUND: The increasing prevalence of overweight and obesity among the worldwide population has been associated with a range of adverse health consequences such as Type 2 diabetes and cardiovascular diseases. The metabolic syndrome (MetS) is a cluster of cardiometabolic abnormalities that occur more commonly in overweight individuals. Time-restricted feeding (TRF) is a dietary approach used for weight loss and overall health. TRF may be an option for those subjects who struggle with extreme restriction diets with foods that generally do not belong to an individual's habits. OBJECTIVE: The purpose of this study was to determine the effect of TRF on body composition and the association of weight loss with metabolic and cardiovascular risks in obese middle-aged women. METHODS: A non-randomized controlled clinical trial was performed over 3 months in obese women (TRF group, n = 20, BMI 32.53 ± 1.13 vs. Control n = 12, BMI 34.55 ± 1.20). The TRF protocol adopted was 16 h without any energy intake followed by 8 h of normal food intake. MAIN OUTCOMES AND MEASURES: Anthropometric measurements, body composition, blood biomarkers, cardiovascular risk in 30 years (CVDRisk30y), and quality of life were evaluated at baseline and after the 3 months. RESULTS: TRF was effective in reducing weight (~ 4 kg), BMI, % of body fat (%BF), waist circumference from baseline without changes in blood biomarkers associated with MetS. TRF promoted a reduction in CVDRisk30y (12%) wich was moderately correlated with %BF (r = 0.62, n = 64, p < 0.001) and %MM (r = - 0.74, n = 64, p < 0.001). CONCLUSIONS: TRF protocol reduces body weight without changes in biomarkers related to MetS. In addition, the anthropometric evaluation that predicts %BF and %MM could be used as an approach to follow individuals engaged in the TRF regimen since they correlate with cardiovascular risk.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Body Mass Index , Cardiovascular Diseases/complications , Female , Heart Disease Risk Factors , Humans , Metabolic Syndrome/complications , Middle Aged , Obesity/complications , Overweight , Quality of Life , Risk Factors , Weight Loss
SELECTION OF CITATIONS
SEARCH DETAIL
...