Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2021: 2695490, 2021.
Article in English | MEDLINE | ID: mdl-33532505

ABSTRACT

Aluminum (Al) is ubiquitously present in the environment and known to be a neurotoxin for humans. The trivalent free Al anion (Al3+) can cross the blood-brain barrier (BBB), accumulate in the brain, and elicit harmful effects to the central nervous system (CNS) cells. Thus, evidence has suggested that Al increases the risk of developing neurodegenerative diseases, particularly Alzheimer's disease (AD). Purinergic signaling has been shown to play a role in several neurological conditions as it can modulate the functioning of several cell types, such as microglial cells, the main resident immune cells of the CNS. However, Al effects on microglial cells and the role of the purinergic system remain elusive. Based on this background, this study is aimed at assessing the modulation of Al on purinergic system parameters of microglial cells. An in vitro study was performed using brain microglial cells exposed to Al chloride (AlCl3) and lipopolysaccharide (LPS) for 96 h. The uptake of Al, metabolism of nucleotides (ATP, ADP, and AMP) and nucleoside (adenosine), and the gene expression and protein density of purinoceptors were investigated. The results showed that both Al and LPS increased the breakdown of adenosine, whereas they decreased nucleotide hydrolysis. Furthermore, the findings revealed that both Al and LPS triggered an increase in gene expression and protein density of P2X7R and A2AR receptors, whereas reduced the A1R receptor expression and density. Taken together, the results showed that Al and LPS altered the setup of the purinergic system of microglial cells. Thus, this study provides new insights into the involvement of the purinergic system in the mechanisms underlying Al toxicity in microglial cells.


Subject(s)
Aluminum/adverse effects , Microglia/drug effects , Microglia/metabolism , Receptors, Purinergic/metabolism , Animals , Biomarkers , Brain/drug effects , Brain/immunology , Brain/metabolism , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gene Expression , Humans , Lipopolysaccharides/immunology , Mice , Microglia/immunology , Receptors, Purinergic/genetics
2.
Chemosphere ; 269: 128712, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33189402

ABSTRACT

Superoxide-hydrogen peroxide (S-HP), triggered by Val16Ala-SOD2 human polymorphism, may influence the risk of depression. Therefore, it is plausible that higher basal S-anion levels and chronic inflammatory states associated with the VV-SOD2 genotype can negatively modulate the stress response associated with resilience in various species, from primitive species to humans. To test this hypothesis, Eisenia fetida earthworms were exposed for 24 h to 30 nM rotenone, which causes mitochondrial dysfunction by generating high S-anion levels (known as the "VV-like phenotype"), and 10 µM porphyrin, a SOD2-like compound, which generates elevated HP levels (known as the "AA-like phenotype"). The results suggested that both S-anion and HP acted as signaling molecules, differentially altering the immune function and acute hydric stressful response. Although the AA-like phenotype improved the immune and stress response efficiencies, the VV-like phenotype showed a downregulated expression of the toll-like receptor (EaTLR, JX898685) and antimicrobial peptide (AMP) (AF060552) genes, which triggered the impairment of encapsulation and earthworms extracellular trap (EET) processes used by earthworms to trap and destroy microorganisms. When exposed to adverse environments and dangerous hydric stress, VV-like earthworms exhibited an impulsive behavior and failed to quickly identify and migrate to a protected environment, unlike control earthworms and AA-like earthworms. All results corroborated that the S-anion imbalance could concomitantly induce alterations in immune function and stress behavior related to earthworm survival. From a human perspective, this information may corroborate the potential specific role of superoxide anion in the modulation of the stress response, resilience, and risk of depression.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Humans , Hydrogen Peroxide , Oligochaeta/genetics , Oligochaeta/metabolism , Oxidative Stress , Soil Pollutants/toxicity , Superoxide Dismutase/metabolism , Superoxides
3.
Biomed Pharmacother ; 131: 110497, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33152899

ABSTRACT

Quetiapine is an antipsychotic drug that is used to treat psychiatric and neurological disorders. Despite its efficiency and low-toxicity, quetiapine administration has been associated with undesirable side effects such as the development of low-grade inflammatory disorders and neutropenia states. As the liver rapidly metabolizes quetiapine to metabolites, the non-metabolized part of this molecule might play a role in immune alterations. In an in vitro study, this hypothesis was tested by exposing activated and inactivated RAW-264.7 macrophages and human neutrophils to unmetabolized quetiapine (u-QUE). Based on our findings, u-QUE was not cytotoxic to these cells. u-QUE differentially modulates macrophages according to their activation states. In inactivated macrophages, u-QUE induced a proinflammatory state as observed by an increase in cellular proliferation; increased levels of oxidative molecules (nitric oxide and superoxide), protein levels, and gene overexpression of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α); and decreased levels of IL-10, an anti-inflammatory cytokine. Conversely, on phytohemagglutinin (PHA)-activated macrophages, u-QUE exerted an anti-inflammatory effect. u-QUE induced neutrophil extracellular trap (NET) formation and increased the sensitivity of the neutrophils previously activated by exposure to dead yeast cells for NET formation. These results confirm the effect of quetiapine on macrophage and neutrophil function, which may be associated with the side effects of this psychopharmaceutical agent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Extracellular Traps/drug effects , Macrophages/drug effects , Neutrophils/drug effects , Quetiapine Fumarate/pharmacology , Animals , Cytokines/genetics , Humans , Immunity, Innate/drug effects , Macrophages/physiology , Mice , Neutrophils/physiology , Quetiapine Fumarate/metabolism , RAW 264.7 Cells
4.
Mol Biol Rep ; 46(2): 2085-2092, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30719606

ABSTRACT

Cutaneous melanoma (CM) is an extremely aggressive cancer presenting low survival and high mortality. The vast majority of patients affected by this disease does not respond or show resistance to the chemotherapeutic drugs, which makes the treatment ineffective. In this sense, the necessity for the development of new agents to assist in CM therapy is extremely important. One of the sources of great interest in this search are compounds of natural origin. Among these compounds, caffeic acid has demonstrated a broad spectrum of pharmacological activities as well as antitumor effects in some types of cancer. Therefore, the objective of this work was to investigate the possible antitumor effect of caffeic acid on the SK-Mel-28 cell line, human CM cells. Cells were cultured in flasks with culture medium containing fetal bovine serum, antibiotic, and antifungal, and maintained in ideal conditions. Cells were treated with 25 µM, 50 µM, 100 µM, 150 µM and 200 µM of caffeic acid and dacarbazine at 1 mg/mL. We verified the effect on cell viability and cell death, apoptosis, cell cycle, colony formation and gene expression of caspases. Results showed a decrease in cell viability, cell death induction by apoptosis, inhibition of colony formation, modulation of cell cycle and alterations in gene expression of caspases after caffeic acid treatment. These results suggest an antitumor effect of the compound on SK-Mel-28 cells. This study provides original information on mechanisms by which caffeic acid may play a key role in preventing tumor progression in human melanoma cells.


Subject(s)
Caffeic Acids/pharmacology , Melanoma/drug therapy , Adult , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caffeic Acids/metabolism , Caspases/drug effects , Caspases/genetics , Cell Cycle/drug effects , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/genetics , Cell Division/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dacarbazine/pharmacology , Female , Healthy Volunteers , Humans , Male , Melanoma/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...