Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(16): 5161-5178, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37389589

ABSTRACT

Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.


Subject(s)
Kefir , Microbiota , Mice , Animals , Kefir/microbiology , Milk/metabolism , Antioxidants , Mice, Inbred C57BL , Feces/microbiology , Fatty Acids, Volatile/metabolism , Butyrates , Brain/metabolism
2.
Food Funct ; 14(8): 3804-3814, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37000521

ABSTRACT

Kefir has been suggested as a possible bacterial prophylaxis against Salmonella and IL-10 production seems to be crucial in the pathogenesis of salmonellosis in mice. This study evaluated the role of IL-10 in the inflammation and gut microbiome in mice consuming milk kefir and orally challenged with Salmonella enterica serovar Typhimurium. C57BL wild type (WT) (n = 40) and C57BL IL-10-/- (KO) (n = 40) mice were subdivided into eight experimental groups either treated or not with kefir. In the first 15 days, the water groups received filtered water (0.1 mL) while the kefir groups received milk kefir (10% w/v) orally by gavage. Then, two groups of each strain received a single dose (0.1 mL) of the inoculum of S. Typhimurium (ATCC 14028, dose: 106 CFU mL-1). After four weeks, the animals were euthanized to remove the colon for further analysis. Kefir prevented systemic infections only in IL-10-/- mice, which were able to survive, regulate cytokines, and control colon inflammation. The abundance in Lachnospiraceae and Roseburia, and also the higher SCFA production in the pre-infection, showed that kefir has a role in intestinal health and protection, colonizing and offering competition for nutrients with the pathogen as well as acting in the regulation of salmonella infectivity only in the absence of IL-10. These results demonstrate the role of IL-10 in the prognosis of salmonellosis and how milk kefir can be used in acute infections.


Subject(s)
Gastrointestinal Microbiome , Kefir , Salmonella Infections , Mice , Animals , Milk , Interleukin-10/genetics , Mice, Inbred C57BL , Salmonella Infections/prevention & control , Inflammation , Salmonella typhimurium/genetics
3.
BMC Vet Res ; 18(1): 115, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331225

ABSTRACT

Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Staphylococcal Infections , Animals , Cattle , Female , Mastitis, Bovine/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/genetics , Virulence Factors/genetics
4.
Curr Microbiol ; 79(4): 101, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35150342

ABSTRACT

Staphylococcus aureus is the main pathogen associated with bovine mastitis, an intramammary inflammation that leads to significant economic losses in dairy herds. Efforts have been made to identify the bacterial determinants important to the infective process but most of the studies are focused on surface and secreted proteins. Considering that virulence is affected by metabolism, in this study we contrasted the proteome of strains of S. aureus causing persistent subclinical (Sau302 and Sau340) and clinical bovine mastitis (RF122). Protein expressions from cytosolic fractions of bacteria grown under conditions mimicking the mastitic mammary glands are reported. A total of 342 proteins was identified, 52 of which were differentially expressed. Among those down-regulated in the subclinical strains were the two-component sensor histidine kinase SaeS and PurH, both involved in bacterial virulence. The ribosome hibernation promotion factor and the 50S ribosomal protein L13 were up-regulated suggesting that Sau302 and Sau340 modulate protein translation, a condition that may contribute to bacterial survival under stressful conditions. TRAP, a regulator possibly involved in pathogenesis, was expressed only in RF122 while proteins from the Isd system, involved in heme acquisition, were exclusive to Sau302 and Sau340. In summary, the metabolic differences suggest a reduced virulence of the strains causing subclinical mastitis which may contribute to the persistent infection seen in the animals.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Animals , Cattle , Female , Proteomics , Staphylococcal Infections/veterinary , Staphylococcus aureus/genetics , Virulence
5.
Microb Pathog ; 137: 103745, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31520734

ABSTRACT

The antivirulence approach to fighting biofilm-based infections caused by Staphylococcus aureus is a promising therapy that has been studied extensively. Here, we compare the antibiofilm activity of a purified lectin from Bothrops jararacussu venom (BJcuL) and commercial lectins obtained from Triticum vulgaris (Wheat Germ Agglutinin, WGA), Bandeiraea simplicifolia BS-II, and Maclura pomifera. Only WGA had antibiofilm activity, although no effect was seen on pre-formed biofilms. The pre-incubation of WGA and BJcuL with their preferential sugars inhibited the biological activity of WGA, but not that of BJcuL, suggesting that biofilm disruption does not involve carbohydrate-recognition domains (CRDs). Quantitative real-time PCR showed that BJcuL promotes modulation of expression of S. aureus genes involved in biofilm formation. Light microscopy revealed cocci and small cell clusters after biofilm formation in the presence of BJcuL, showing that the lectin treatment was unable to completely disrupt biofilm structure. Exposing the free cells to 50 times the minimum inhibitory concentration of gentamicin or ciprofloxacin did not prevent biofilm reestablishment, although inhibition was stronger than in the control (no lectin). This disruption of the biofilm architecture can expose the bacterial cell and may facilitate clearance by the immune system.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Crotalid Venoms/pharmacology , Staphylococcus aureus/drug effects , Animals , Bothrops , Carbohydrates/chemistry , Ciprofloxacin/pharmacology , Crotalid Venoms/isolation & purification , Gene Expression Regulation, Bacterial , Gentamicins/pharmacology , Lectins, C-Type/isolation & purification , Microbial Sensitivity Tests , Staphylococcus aureus/genetics
6.
BMC Complement Altern Med ; 19(1): 189, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31357964

ABSTRACT

BACKGROUND: The Atlantic Forest biome extends along the entire Brazilian coast and is home to approximately 20,000 plant species, many of which are endemic; it is considered one of the hotspot regions of the planet. Several of these species are sources of natural products with biological activities that are still unknown. In this study, we evaluated the antimicrobial activity of 90 extracts derived from native Atlantic Forest tree species against Staphylococcus aureus, an important human and veterinary pathogen. METHODS: Extracts from native Atlantic Forest tree species were evaluated for their antimicrobial activity against S. aureus by in vitro standard methods. Phytochemical fractionation of the extract from Maclura tinctoria was performed by liquid-liquid partitioning. LC-DAD-ESI-MS was used for identification of constituents in the most active fraction. Damage of cells and alterations in the permeability of cell membrane were determined by atomic force microscopy (AFM) and crystal violet uptake assay, respectively. In vivo antimicrobial activity was evaluated using Galleria mellonella larvae infected with S. aureus with survival data collected using the Kaplan-Meier method. RESULTS: Among the organic or aqueous extracts tested here, 26 showed biological activity. Eight species showed relevant results, with a minimum inhibitory concentration (MIC) below 1 mg/mL. Antibacterial activity was registered for three species for the first time. An organic extract from Maclura tinctoria leaves showed the lowest MIC (0.08 mg/mL). Fractionation of this extract by liquid-liquid partitioning led to obtaining fraction 11FO d with a MIC of 0.04 mg/mL. This fraction showed strong activity against veterinary S. aureus isolates and contributed to the increased survival of Galleria mellonella larvae infected with S. aureus ATCC 29213. The bacterial surface was not altered by the presence of 11FO d, and no cell membrane damage was detected. The LC-DAD-ESI/MS analyses identified prenylated flavonoids as the major constituents responsible for the antibacterial activity of this active extract. CONCLUSION: A fraction enriched in prenylated isoflavones and flavanones from M. tinctoria showed in vitro and in vivo efficacy as antistaphylococcal agents. These findings justify the need for further research to elucidate the mechanisms of action of these compounds.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Flavonoids/administration & dosage , Maclura/chemistry , Moths/microbiology , Plant Extracts/administration & dosage , Protective Agents/administration & dosage , Staphylococcal Infections/prevention & control , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Brazil , Disease Models, Animal , Flavonoids/chemistry , Humans , Larva/growth & development , Larva/microbiology , Microbial Sensitivity Tests , Moths/growth & development , Plant Extracts/chemistry , Protective Agents/chemistry , Staphylococcal Infections/microbiology
7.
BMC Vet Res ; 11: 3, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25591667

ABSTRACT

BACKGROUND: Staphylococcus aureus is associated with chronic mastitis in cattle, and disease manifestation is usually refractory to antibiotic therapy. Biofilm production is a key element of S. aureus pathogenesis and may contribute to the treatment failure that is consistently reported by veterinarians. Minas Gerais State is the largest milk-producing state in Brazil, and the characterization of bacterial isolates is an important aspect of disease control for dairy farmers. Here, we investigated the potential of S. aureus isolated from bovine mastitis to produce slime and biofilm in a skim-milk medium and classified the isolates according to their agr type. RESULTS: Slime was detected using the Congo Red agar (CRA) test in 35.18% (19/54) of the strains; however, 87.04% (47/54) of the strains were considered biofilm-positive based on crystal violet staining. Compared to TSB supplemented with 0.25% glucose, skim milk significantly increased the production of biofilm, but this effect was only observed in slime-producing strains. The bacteria belonged to agr groups I (12/54), II (34/54), III (6/54), and IV (2/54), and bacteria in agr group III were found to be stronger biofilm producers than those in groups I and II. Again, milk had a significant influence only on slime-positive agr I and II isolates, revealing an association between milk and slime. CONCLUSIONS: The present study demonstrated that skim-milk medium and slime production are two factors that together influence biofilm formation by bovine strains of S. aureus. A predominance of bacteria belonging to agr group II was observed, and bacteria from agr group III showed the highest proportion of biofilm producers. The majority of bacteria characterized in this study formed biofilm in milk, which suggests that biofilm formation has an important role in the virulence of S. aureus isolated from bovine intramammary infections.


Subject(s)
Biofilms/growth & development , Mastitis, Bovine/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/physiology , Animals , Cattle , Culture Media , Female , Milk , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...