Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(2): 991-1001, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044397

ABSTRACT

Swine dysentery, spirochetal colitis, and salmonellosis are production-limiting enteric diseases of global importance to the swine industry. Despite decades of efforts, mitigation of these diseases still relies on antibiotic therapy. A common knowledge gap among the 3 agents is the early B-cell response to infection in pigs. Thus, this study aimed to characterize the porcine B-cell response to Brachyspira hyodysenteriae, Brachyspira hampsonii (virulent and avirulent strains), Brachyspira pilosicoli, and Salmonella Typhimurium, the agents of the syndromes mentioned above. Immortalized porcine B-cell line derived from a crossbred pig with lymphoma were co-incubated for 8 h with each pathogen, as well as E. coli lipopolysaccharide (LPS) and a sham-inoculum (n = 3/treatment). B-cell viability following treatments was evaluated using trypan blue, and the expression levels of B-cell activation-related genes was profiled using reverse transcription quantitative PCR. Only S. Typhimurium and LPS led to increased B-cell mortality. B. pilosicoli downregulated B-lymphocyte antigen (CD19), spleen associated tyrosine Kinase (syk), tyrosine-protein kinase (lyn), and Tumour Necrosis Factor alpha (TNF-α), and elicited no change in immunoglobulin-associated beta (CD79b) and swine leukocyte antigen class II (SLA-DRA) expression levels, when compared to the sham-inoculated group. In contrast, all other treatments significantly upregulated CD79b and stimulated responses in other B-cell downstream genes. These findings suggest that B. pilosicoli does not elicit an immediate T-independent B-cell response, nor does it trigger antigen-presenting mechanisms. All other agents activated at least one trigger within the T-independent pathways, as well as peptide antigen presenting mechanisms. Future research is warranted to verify these findings in vivo.


Subject(s)
Gram-Negative Bacterial Infections , Swine Diseases , Swine , Animals , Gram-Negative Bacterial Infections/pathology , Gram-Negative Bacterial Infections/veterinary , Escherichia coli , Lipopolysaccharides/toxicity , Diarrhea/veterinary , Diarrhea/pathology
2.
Methods Mol Biol ; 2749: 91-101, 2024.
Article in English | MEDLINE | ID: mdl-38133777

ABSTRACT

Models have been extensively used to investigate disease pathogenesis. Animal models are costly and require extensive logistics for animal care, and samples are not always suitable for different analytical techniques or to answer the research question. In vitro cell culture models are generally focused on recreating a specific characteristic of an organ and are limited to a single cell population that does not display the characteristic tissue architecture of the source organ. In addition, such models do not account for the many interactions between pathogens and the diverse cell subsets that are normally present in a given organ. Conclusions based on conventional 2D cell culture methods are limited, requiring extrapolation from a reductionist model to understand in vivo events. In vitro organ culture (IVOC) offers a way to overcome some of these limitations. Explants conserve important in vivo characteristics, such as different cell types and complex tissue architecture. This in vitro (ex vivo) organ culture protocol of the swine large intestine aims at maintaining viable colonic mucosa for up to 5 days. The protocol described herein applies a combination of methods used for immortalized cell culture and stem cell stimulation to support the physiological cellular flow inherent of the intestinal mucosa. Required equipment includes a hyperoxic chamber and culture at the air-liquid interface.


Subject(s)
Colon , Intestinal Mucosa , Swine , Animals , Organ Culture Techniques/methods , Cell Culture Techniques , Models, Animal
3.
Acta Vet Scand ; 65(1): 16, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37118781

ABSTRACT

Streptococcus canis is a beta-haemolytic, Gram-positive cocci commonly identified on the canine ocular surface under both healthy and diseased conditions. The objective of the study was to determine the prevalence of S. canis on the normal and abnormal ocular surface of a canine ophthalmology referral population in Canada, and to investigate potential clinical aspects that may be associated with its presence. Included were 59 dogs (118 eyes) with unilateral or bilateral ocular disease diagnosed at the time of conjunctival sampling. A real-time PCR specific for S. canis was standardized for use with conjunctival swabs. Total DNA was extracted from 118 samples and used as template for the diagnostic assay. Samples were considered positive if amplification was detected and dissociation temperature matched a positive control. Signalment and other clinical data were also collected at the time of sampling. Of the 118 eyes sampled, 8 tested positive for S. canis (6.8%). No association between the detection of S. canis and breed, cephalic conformation, sex, age, use of ophthalmic antibiotics or other topical medications, ophthalmic diagnosis, use of systemic antibiotics or other systemic medications, or systemic diagnosis was identified. In conclusion, S. canis may be present on the ocular surface of dogs at a higher rate than previously reported. It is suggested that this may be linked to the use of PCR for pathogen detection instead of culture.


Subject(s)
Dog Diseases , Eye Diseases , Animals , Dogs , Anti-Bacterial Agents , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Eye Diseases/epidemiology , Eye Diseases/veterinary , Prevalence , Streptococcus/genetics , Canada
SELECTION OF CITATIONS
SEARCH DETAIL
...