Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2022: 4101095, 2022.
Article in English | MEDLINE | ID: mdl-35345833

ABSTRACT

Thiosemicarbazones are well known for their broad spectrum of action, including antitumoral and antiparasitic activities. Thiosemicarbazones work as chelating binders, reacting with metal ions. The objective of this work was to investigate the in silico, in vitro, and in vivo toxicity and oxidative stress of 2-acetylpyridine-N(4)-orthochlorophenyl thiosemicarbazone (TSC01). The in silico prediction showed good absorption by biological membranes and no theoretical toxicity. Also, the compound did not show cytotoxicity against Hep-G2 and HT-29 cells. In the acute nonclinical toxicological test, the animals treated with TSC01 showed behavioral changes of stimulus of the central nervous system (CNS) at 300 mg/kg. One hour after administration, a dose of 2000 mg/kg caused depressive signs. All changes disappeared after 24 h, with no deaths, which suggest an estimated LD50 of 5000 mg/kg and GSH 5. The group treated with 2000 mg/kg had an increase of water consumption and weight gain in the second week. The biochemical parameters presented no toxicity relevance, and the analysis of oxidative stress in the liver found an increase of lipid peroxidation and nitric oxide. However, histopathological analysis showed organ integrity was maintained without any changes. In conclusion, the results show the low toxicological potential of thiosemicarbazone derivative, indicating future safe use.


Subject(s)
Thiosemicarbazones , Animals , Lipid Peroxidation , Oxidative Stress , Pyridines , Thiosemicarbazones/chemistry , Thiosemicarbazones/toxicity
2.
Oxid Med Cell Longev ; 2018: 6179427, 2018.
Article in English | MEDLINE | ID: mdl-29849905

ABSTRACT

Phenolic compounds, among them isopropyl caffeate, possess antioxidant potential, but not without toxicity and/or adverse effects. The present study aimed to evaluate the antioxidant activity and toxicity of isopropyl caffeate through in silico, in vitro and in vivo testing. The results showed that isopropyl caffeate presents no significant theoretical risk of toxicity, with likely moderate bioactivity: GPCR binding, ion channel modulation, nuclear receptor binding, and enzyme inhibition. Isopropyl caffeate induced hemolysis only at the concentrations of 500 and 1000 µg/ml. We observed types A and O erythrocyte protection from osmotic stress, no oxidation of erythrocytes, and even sequestrator and antioxidant behavior. However, moderate toxicity, according to the classification of GHS, was demonstrated through depressant effects on the central nervous system, though there was no influence on water and food consumption or on weight gain, and it did present possible hepatoprotection. We conclude that the effects induced by isopropyl caffeate are due to its antioxidant activity, capable of preventing production of free radicals and oxidative stress, a promising molecule with pharmacological potential.


Subject(s)
Antioxidants/therapeutic use , Caffeic Acids/therapeutic use , Oxidative Stress/drug effects , Antioxidants/pharmacology , Caffeic Acids/pharmacology , Humans
3.
Article in English | MEDLINE | ID: mdl-24023569

ABSTRACT

Assays in vitro and in vivo were performed on extract from roots and leaves from the Valeriana prionophylla Standl. (VPR and VPF, resp.). In phenylephrine (1 µ M) precontracted rings, VPR (0.01-300 µ g/mL) induced a concentration-dependent relaxation (maximum response (MR) = 75.4 ± 4.0%, EC50 = 5.97 (3.8-9.3) µ g/mL, n = 6]); this effect was significantly modified after removal of the endothelium (EC50 = 39.6 (27.2-57.6) µ g/mL, P < 0.05). However, VPF-induced vasorelaxation was less effective compared to VPR. When rings were preincubated with L-NAME (100 µ M) or indomethacin (10 µ M), the endothelium-dependent relaxation induced by VPR was significantly attenuated (MR = 20.9 ± 2.3%, 34.2 ± 2.9%, resp., P < 0.001). In rings denuded endothelium, precontracted with KCl (80 mM), or in preparations pretreated with KCl (20 mM) or tetraethylammonium (1 or 3 mM), the vasorelaxant activity of VPR was significantly attenuated (MR = 40.0 ± 8.2, n = 5; 50.5 ± 6.0%; 49.3 ± 6.4%; 46.8 ± 6.2%; resp., P < 0.01). In contrast, neither glibenclamide (10 µ M), barium chloride (30 µ M), nor 4-aminopyridine (1 mM) affected VPR-induced relaxation. Taken together, these results demonstrate that hypotension induced by VPR seems to involve, at least in part, a vascular component. Furthermore, endothelium-independent relaxation induced by VPR involves K(+) channels activation, most likely due to BKCa channels, in the rat superior mesenteric artery.

SELECTION OF CITATIONS
SEARCH DETAIL
...