Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Article in English | MEDLINE | ID: mdl-36526272

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Subject(s)
COVID-19 , Sepsis , Humans , Mice , Animals , Oseltamivir/adverse effects , Zanamivir/adverse effects , Neuraminidase/metabolism , Neuraminidase/pharmacology , Neutrophils , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species , Lipopolysaccharides/pharmacology , Sepsis/chemically induced
2.
bioRxiv ; 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-33200130

ABSTRACT

Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.

3.
Biomed Pharmacother ; 130: 110578, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32750650

ABSTRACT

BACKGROUND: Estragole is an aromatic organic compound belonging to the class of phenylpropanoids derived from cinnamic aldehydes and present in essential oils of plant species, such asRavensara anisata (madeira), Ocimum basilicum (manjericão/alfavaca) and Croton zehntneri (canelinha). Pharmacological studies report its anti-inflammatory, antioxidant and vasorelaxant activity. HYPOTHESIS/PURPOSE: This study aimed to evaluate the acute non-clinical toxicity, gastroprotective activity and the related mechanisms of action. METHODS: Acute toxicity was assessed according to OECD guide 423 in mice. Ethanol, stress, piroxicam and pylorus ligation-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were using the ethanol-gastric lesions protocol. RESULTS: In the acute oral toxicity assay, doses of 300 or 2000 mg/kg of estragole administered orally in Swiss mice did not induce any behavioral changes. However, the dose of 2000 mg/kg showed a decrease in water and feed intake. Lethal dose 50 % (LD50) was set to be equal to or greater than 2500 mg/kg, according to OECD. In all evaluated protocols, estragole (31.25, 62.5, 125 and 250 mg/kg) significantly reduced the area of ​​ulcerative lesion when compared to control groups. To investigate the mechanisms involved in the gastroprotective activity, the antisecretory or neutralizing of gastric secretion, cytoprotectant, antioxidant and immunoregulatory effects were evaluated. Results showed that treatment with estragole (250 mg/kg) reduced (p < 0.05) the volume of the gastric juice. Besides, sulfhydryl groups, nitric oxide, mucus and prostaglandins seems to be involved in the gastroprotective property. Treatment also increased (p < 0.001) levels of reduced glutathione (GSH), interleukin-10 (IL-10) and positive cells marked for glutathione peroxidase (GPx) and cyclooxygenase 2 (COX-2). It also reduced (p < 0.001) malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) (p < 0.05) levels. CONCLUSION: Thus, it is possible to infer that estragole presents gastroprotective activity related to antisecretory, cytoprotective, antioxidant and immunomodulatory mechanisms.


Subject(s)
Anisoles/therapeutic use , Anti-Ulcer Agents/therapeutic use , Antioxidants/therapeutic use , Immunologic Factors/therapeutic use , Stomach Ulcer/drug therapy , Allylbenzene Derivatives , Animals , Anisoles/pharmacology , Anti-Inflammatory Agents, Non-Steroidal , Anti-Ulcer Agents/pharmacology , Antioxidants/pharmacology , Cytokines/immunology , Cytoprotection , Ethanol , Gastric Mucosa/cytology , Immunologic Factors/pharmacology , Male , Mice , Piroxicam , Rats, Wistar , Stomach/drug effects , Stomach/pathology , Stomach Ulcer/etiology , Stomach Ulcer/immunology , Stomach Ulcer/pathology , Stress, Psychological
4.
Naunyn Schmiedebergs Arch Pharmacol ; 393(12): 2265-2278, 2020 12.
Article in English | MEDLINE | ID: mdl-32642876

ABSTRACT

Rosmarinic acid (RA) is a secondary metabolite present in several plant species that has already demonstrated antioxidant, antiallergic, anticancer, antimicrobial, neuroprotective, and hepatoprotective effects experimentally. Due to the promising pharmacological properties found previously, this study aimed to assess the oral acute toxicity and the gastroprotective effect of RA using animal models. Acute toxicity was assessed according to OECD guide 423. Ethanol, stress, NSAIDs, and pylorus ligature-induced gastric ulcer models were used to investigate antiulcer properties. The related mechanisms of action were also evaluated from ethanol-induced gastric lesions protocol. RA (300 and 2000 mg/kg) showed no changes in behavioral, water and food intake, body and organs weight parameters with LD50 set around 2500 mg/kg. RA presented gastroprotective activity in all assessed doses (25, 50, 100, and 200 mg/kg) using different animal models. Besides, it was observed that this effect is not related to the modulation of gastric juice parameters (pH, volume, and [H+]), the participation of nitric oxide, mucus, and prostaglandins. However, increased sulfhydryl groups, GSH and IL-10 levels as well as reduced of proinflammatory cytokine (TNF-α and IL-1ß) levels were found for RA-treated groups. RA presents low acute toxicity and gastroprotective activity, preventing ulcer formation via cytoprotective, antioxidant, and anti-inflammatory mechanisms. Graphical abstract.


Subject(s)
Anti-Ulcer Agents/administration & dosage , Antioxidants/administration & dosage , Cinnamates/administration & dosage , Depsides/administration & dosage , Immunologic Factors/administration & dosage , Stomach Ulcer/prevention & control , Sulfhydryl Compounds/administration & dosage , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Dose-Response Relationship, Drug , Female , Gastric Mucosa/drug effects , Gastric Mucosa/immunology , Gastric Mucosa/metabolism , Male , Mice , Rats , Rats, Wistar , Stomach Ulcer/immunology , Stomach Ulcer/metabolism , Rosmarinic Acid
5.
Molecules ; 20(1): 929-50, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25580688

ABSTRACT

Peptic ulcer is a common disease characterized by lesions that affect the mucosa of the esophagus, stomach and/or duodenum, and may extend into the muscular layer of the mucosa. Natural products have played an important role in the process of development and discovery of new drugs, due to their wide structural diversity and present, mostly specific and selective biological activities. Among natural products the alkaloids, biologically active secondary metabolites, that can be found in plants, animals or microorganisms stand out. The alkaloids are compounds consisting of a basic nitrogen atom that may or may not be part of a heterocyclic ring. This review will describe 15 alkaloids with antiulcer activity in animal models and in vitro studies.


Subject(s)
Alkaloids/therapeutic use , Peptic Ulcer/drug therapy , Alkaloids/chemistry , Animals , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...