Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Plant Sci ; 13: 984804, 2022.
Article in English | MEDLINE | ID: mdl-36092396

ABSTRACT

Common bean (Phaseolus vulgaris L.) is a staple food in Brazil with both nutritional and socioeconomic importance. As an orphan crop, it has not received as much research attention as the commodity crops. Crop losses are strongly related to virus diseases transmitted by the whitefly Bemisia tabaci, one of the most important agricultural pests in the world. The main method of managing whitefly-transmitted viruses has been the application of insecticides to reduce vector populations. Compared to chemical vector control, a more sustainable strategy for managing insect-borne viruses is the development of resistant/tolerant cultivars. RNA interference has been applied to develop plant lines resistant to the whitefly in other species, such as tomato, lettuce and tobacco. Still, no whitefly-resistant plant has been made commercially available to date. Common bean is a recalcitrant species to in vitro regeneration; therefore, stable genetic transformation of this plant has been achieved only at low frequencies (<1%) using particle bombardment. In the present work, two transgenic common bean lines were obtained with an intron-hairpin construct to induce post-transcriptional gene silencing against the B. tabaci vATPase (Bt-vATPase) gene, with stable expression of siRNA. Northern blot analysis revealed the presence of bands of expected size for siRNA in leaf samples of the line Bt-22.5, while in the other line (11.5), the amount of siRNA produced was significantly smaller. Bioassays were conducted with both lines, but only the line Bt-22.5 was associated with significant mortality of adult insects (97% when insects were fed on detached leaves and 59% on the whole plant). The expression of the Bt-vATPase gene was 50% lower (p < 0.05) in insects that fed on the transgenic line Bt-22.5, when compared to non-transgenic controls. The transgenic line did not affect the virus transmission ability of the insects. Moreover, no effect was observed on the reproduction of non-target organisms, such as the black aphid Aphis craccivora, the leafminer Liriomyza sp. and the whitefly parasitoid Encarsia formosa. The results presented here serve as a basis for the development of whitefly-tolerant transgenic elite common bean cultivars, with potential to contribute to the management of the whitefly and virus diseases.

2.
Planta ; 251(2): 56, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32006110

ABSTRACT

MAIN CONCLUSION: The structure of the cotton uceA1.7 promoter and its modules was analyzed; the potential of their key sequences has been confirmed in different tissues, proving to be a good candidate for the development of new biotechnological tools. Transcriptional promoters are among the primary genetic engineering elements used to control genes of interest (GOIs) associated with agronomic traits. Cotton uceA1.7 was previously characterized as a constitutive promoter with activity higher than that of the constitutive promoter from the Cauliflower mosaic virus (CaMV) 35S gene in various plant tissues. In this study, we generated Arabidopsis thaliana homozygous events stably overexpressing the gfp reporter gene driven by different modules of the uceA1.7 promoter. The expression level of the reporter gene in different plant tissues and the transcriptional stability of these modules was determined compared to its full-length promoter and the 35S promoter. The full-length uceA1.7 promoter exhibited higher activity in different plant tissues compared to the 35S promoter. Two modules of the promoter produced a low and unstable transcription level compared to the other promoters. The other two modules rich in cis-regulatory elements showed similar activity levels to full-length uceA1.7 and 35S promoters but were less stable. This result suggests the location of a minimal portion of the promoter that is required to initiate transcription properly (the core promoter). Additionally, the full-length uceA1.7 promoter containing the 5'-untranslated region (UTR) is essential for higher transcriptional stability in various plant tissues. These findings confirm the potential use of the full-length uceA1.7 promoter for the development of new biotechnological tools (NBTs) to achieve higher expression levels of GOIs in, for example, the root or flower bud for the efficient control of phytonematodes and pest-insects, respectively, in important crops.


Subject(s)
Gossypium/genetics , 5' Untranslated Regions , Arabidopsis/genetics , Caulimovirus/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genes, Reporter , Genetic Engineering , Gossypium/anatomy & histology , Gossypium/growth & development , Plants, Genetically Modified , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...