Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Appl Microbiol ; 132(2): 822-840, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34327773

ABSTRACT

Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.


Subject(s)
Chickens , Hyaluronic Acid , Animals , Fermentation , Male , Streptococcus
2.
Sci Rep ; 9(1): 8794, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217528

ABSTRACT

In Colombia, coffee growers use a traditional method of fermentation to remove the cherry pulp surrounding the beans. This process has a great influence on sensory quality and prestige of Colombian coffee in international markets, but has never been studied. Here we use an Illumina-based amplicon sequencing to investigate bacterial and fungal communities associated with spontaneous coffee-bean fermentation in Colombia. Microbial-derived metabolites were further analysed by high-performance liquid chromatography and gas chromatography-mass spectrometry. Highly diverse bacterial groups, comprising 160 genera belonging to 10 phyla, were found. Lactic acid bacteria (LAB), mainly represented by the genera Leuconostoc and Lactobacillus, showed relative prevalence over 60% at all sampling times. The structure of the fungal community was more homogeneous, with Pichia nakasei dominating throughout the fermentation process. Lactic acid and acetaldehyde were the major end-metabolites produced by LAB and Pichia, respectively. In addition, 20 volatile compounds were produced, comprising alcohols, organic acids, aldehydes, esters, terpenes, phenols, and hydrocarbons. Interestingly, 56 microbial genera, associated with native soil, seawater, plants, insects, and human contact, were detected for the first time in coffee fermentation. These microbial groups harbour a remarkable phenotypic diversity and may impart flavours that yield clues to the terroir of Colombian coffees.


Subject(s)
Bacteria/growth & development , Coffee/microbiology , Fermentation , Fungi/growth & development , High-Throughput Nucleotide Sequencing , Bacteria/genetics , Colombia , Fungi/genetics , Hydrogen-Ion Concentration , Metabolome , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sugars/analysis , Temperature , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...