Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hematol Oncol Stem Cell Ther ; 17(2): 120-129, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38560971

ABSTRACT

BACKGROUND AND OBJECTIVES: Bone marrow mesenchymal stromal cells (BM-MSCs) are key elements of the hematopoietic niche and participate in the regulatory mechanisms of hematopoietic stem cells (HSCs). Hematological diseases can affect MSCs and their functions. However, the dysregulations caused by sickle cell disease (SCD) are not fully elucidated. This work explored changes in BM-MSCs and their relationship with age using sickle cell mice (Townes-SS). MATERIALS AND METHODS: BM-MSCs were isolated from Townes-SS, and control groups 30- and 60-day-old Townes-AA and C57BL/6 J. RESULTS: The BM-MSCs showed no morphological differences in culture and demonstrated a murine MSC-like immunophenotypic profile (Sca-1+, CD29+, CD44+, CD90.2+, CD31-, CD45-, and CD117-). Subsequently, all BM-MSCs were able to differentiate into adipocytes and osteocytes in vitro. Finally, 30-day-old BM-MSCs of Townes-SS showed higher expression of genes related to the maintenance of HSCs (Cxcl12, Vegfa, and Angpt1) and lower expression of pro-inflammatory genes (Tnfa and Il-6). However, 60-day-old BM-MSCs of Townes-SS started to show expression of genes related to reduced HSC maintenance and increased expression of pro-inflammatory genes. CONCLUSION: These results indicates age as a modifying factor of gene expression of BM-MSCs in the context of SCD.


Subject(s)
Anemia, Sickle Cell , Mesenchymal Stem Cells , Humans , Animals , Mice , Bone Marrow , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Bone Marrow Cells/metabolism , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL
...