Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138548

ABSTRACT

In this paper, novel mixed Tutton salts with the chemical formulas K2Mn0.03Ni0.97(SO4)2(H2O)6 and K2Mn0.18Cu0.82(SO4)2(H2O)6 were synthesized and studied as compounds for thermochemical heat storage potential. The crystallographic structures of single crystals were determined by X-ray diffraction. Additionally, a comprehensive computational study, based on density functional theory (DFT) calculations and Hirshfeld surface analysis, was performed to calculate structural, electronic, and thermodynamic properties of the coordination complexes [MII(H2O)6]2+ (MII = Mn, Ni, and Cu), as well as to investigate intermolecular interactions and voids in the framework. The axial compressions relative to octahedral coordination geometry observed in the crystal structures were correlated and elucidated using DFT investigations regarding Jahn-Teller effects arising from complexes with different spin multiplicities. The spatial distributions of the frontier molecular orbital and spin densities, as well as energy gaps, provided further insights into the stability of these complexes. Thermogravimetry, differential thermal analysis, and differential scanning calorimetry techniques were also applied to identify the thermal stability and physicochemical properties of the mixed crystals. Values of dehydration enthalpy and storage energy density per volume were also estimated. The two mixed sulfate hydrates reported here have low dehydration temperatures and high energy densities. Both have promising thermal properties for residential heat storage systems, superior to the Tutton salts previously reported.

2.
RSC Adv ; 13(48): 34032-34044, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38020030

ABSTRACT

Saturated monocarboxylic fatty acids with long carbon chains are organic compounds widely used in several applied fields, such as energy production, thermal energy storage, antibactericidal, antimicrobial, among others. In this research, a new polymorphic phase of arachidic acid (AA) crystal was synthesized and its structural and vibrational properties were studied by single-crystal X-ray diffraction (XRD) and polarized Raman scattering. The new structure of AA was solved at two different temperature conditions (100 and 300 K). XRD analysis indicated that this polymorph belongs to the monoclinic space group P21/c (C2h5), with four molecules per unit cell (Z = 4). All molecules in the crystal lattice adopt a gauche configuration, exhibiting a R22(8) hydrogen bond pattern. Consequently, this new polymorphic phase, labeled as B form, is a polytype belonging to the monoclinic symmetry, i.e., Bm form. Complementarily, Hirshfeld's surfaces were employed to analyze the intermolecular interactions within the crystal lattice of this polymorph at temperatures of 100 and 300 K. Additionally, density functional theory (DFT) calculations were performed to assign all intramolecular vibration modes related to experimental Raman-active bands, which were properly calculated using a dimer model, considering a pair of AA molecules in the gauche configuration, according to the solved-crystal structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...