Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 447(1-2): 1-7, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29372531

ABSTRACT

The human amylin is a pancreatic peptide hormone found in hyperhormonemic state along with insulin in subclinical diabetes. Amylin has been associated with the pathology of type 2 diabetes, particularly due to its ability to assembly into toxic oligomers and amyloid specimens. On the other hand, some variants such as murine amylin has been described as non-amyloidogenic, either in vitro or in vivo. Recent data have demonstrated the amyloid propensity of murine amylin and the therapeutic analogue pramlintide, suggesting a universality for amylin amyloidosis. Here, we report the amyloidogenesis of murine amylin, which showed lower responsivity to the fluorescent probe thioflavin T compared to human amylin, but presented highly organized fibrilar amyloid material. The aggregation of murine amylin also resulted in the formation of cytotoxic specimens, as evaluated in vitro in INS-1 cells. The aggregation product from murine amylin was responsive to a specific antibody raised against amyloid oligomers, the A11 oligomer antibody. Pancreatic islets of wild-type Swiss male mice have also shown responsivity for the anti-oligomer, indicating the natural abundance of such specimen in rodents. These data provide for the first time evidences for the toxic nature of oligomeric assemblies of murine amylin and its existence in wild-type, non-transgenic mice.


Subject(s)
Amyloid/immunology , Antibodies/pharmacology , Insulin-Secreting Cells/immunology , Islet Amyloid Polypeptide/immunology , Islet Amyloid Polypeptide/toxicity , Protein Aggregation, Pathological/immunology , Animals , Antibodies/immunology , Humans , Insulin-Secreting Cells/pathology , Male , Mice , Protein Aggregation, Pathological/pathology
2.
PLoS Negl Trop Dis ; 4(6): e726, 2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20614019

ABSTRACT

BACKGROUND: Human paracoccidioidomycosis (PCM) is an endemic fungal disease of pulmonary origin. Follow-up of pulmonary lesions by image studies in an experimental model of PCM has not been previously attempted. This study focuses on defining patterns, topography and intensity of lung lesions in experimentally infected PCM mice by means of a comparative analysis between High Resolution Computed Tomography (HRCT) and histopathologic parameters. METHODOLOGY: Male BALB/c mice were intranasally inoculated with 3 x 10(6) Paracoccidioides brasiliensis (Pb) conidia (n = 50) or PBS (n = 50). HRCT was done every four weeks to determine pulmonary lesions, quantify lung density, reconstruct and quantify lung air structure. Lungs were also analyzed by histopathology and histomorphometry. RESULTS: Three different patterns of lesions were evidenced by hrct and histopathology, as follows: nodular-diffuse, confluent and pseudo-tumoral. The lesions were mainly located around the hilus and affected more frequently the left lung. At the 4th week post-challenge HRCT showed that 80% of the Pb-infected mice had peri-bronchial consolidations associated with a significant increase in upper lung density when compared with controls, (-263+/-25 vs. -422+/-10 HU, p<0.001). After the 8th and 12th weeks, consolidation had progressed involving also the middle regions. Histopathology revealed that consolidation as assessed by HRCT was equivalent histologically to a confluent granulomatous reaction, while nodules corresponded to individual compact granulomas. At the 16th week of infection, confluent granulomas formed pseudotumoral masses that obstructed large bronchi. Discrete focal fibrosis was visible gradually around granulomas, but this finding was only evident by histopathology. CONCLUSIONS/SIGNIFICANCE: This study demonstrated that conventional HRCT is a useful tool for evaluation and quantification of pulmonary damage occurring in experimental mouse PCM. The experimental design used decreases the need to sacrifice a large number of animals, and serves to monitor treatment efficacy by means of a more rational approach to the study of human lung disease.


Subject(s)
Lung/diagnostic imaging , Lung/pathology , Paracoccidioidomycosis/diagnostic imaging , Paracoccidioidomycosis/pathology , Analysis of Variance , Animals , Disease Models, Animal , Histocytochemistry , Male , Mice , Mice, Inbred BALB C , Pneumonia/pathology , Radiography, Thoracic , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...