Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 35517-35527, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36529799

ABSTRACT

Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity and regioselectivity and easy availability, being considered a clean technology (white biotechnology). Specially in the treatment of effluents from dairy industries, these enzymes are of particular importance as they specifically hydrolyze O&G. In this context, the objective of this work is to prospect filamentous fungi with the ability to synthesize lipases for application in a high-fat dairy wastewater environment. We identified and characterized the fungal species Aspergillus sclerotiorum as a good lipase producer. Specifically, we observed highest lipolytic activity (20.72 U g-1) after 96 h of fermentation using sunflower seed as substrate. The fungal solid fermented was used in the bioremediation in dairy effluent to reduce O&G. The experiment was done in kinetic from 24 to 168 h and reduced over 90% of the O&G present in the sample after 168 h. Collectively, our work demonstrated the efficiency and applicability of fungal fermented solids in bioremediation and how this process can contribute to a more sustainable wastewater pretreatment, reducing the generation of effluents produced by dairy industries.


Subject(s)
Aspergillus , Wastewater , Biodegradation, Environmental , Lipase , Oils
2.
Methods Mol Biol ; 2232: 85-112, 2021.
Article in English | MEDLINE | ID: mdl-33161542

ABSTRACT

Plants harbor a large reservoir of fungal diversity, encompassing endophytic, epiphytic, phytopathogenic, and rhizosphere-associated fungi. Despite this diversity, relatively few fungal species have been characterized as sources of bioactive secondary metabolites. The role of secondary metabolites is still not fully understood; however, it is suggested that these metabolites play important roles in defense mechanisms and fungal interactions with other organisms. Hence, fungal secondary metabolites have potential biotechnological applications as prototype molecules for the development of therapeutic drugs. In this chapter, we describe the main methods used for routine fungi isolation, production of crude fungal extracts, and chemical characterization of bioactive compounds. In addition, explicative notes about the steps described are provided to explore the diversity of the endophytic, phytopathogenic, epiphytic, and rhizosphere fungi and to evaluate the biotechnological potential of each group.


Subject(s)
Bioprospecting/methods , Classification/methods , Fungi/genetics , Plants/genetics , Antifungal Agents/chemistry , Endophytes/genetics , Endophytes/growth & development , Fungi/chemistry , Fungi/classification , Plants/microbiology
3.
Antonie Van Leeuwenhoek ; 108(3): 753-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26215753

ABSTRACT

Fifty-two yeast isolates from flowers and associated nitidulid beetles of the Brazilian Atlantic Forest (Mata Atlântica) region were found to represent a new species in the large-spored Metschnikowia clade. The species is heterothallic, haploid, and allogamous, and produces asci with two aciculate ascospores that can reach 80 µm in length, as is typical in the clade. Analysis of sequences of the ribosomal RNA gene cluster indicates that the new species is closely related to Metschnikowia lochheadii, which ranges across Central America to northern Brazil, occurs as an adventive species in Hawaii, but is rarely found in central Brazil. The species is not readily distinguishable from relatives based on morphology or growth responses, but is well delineated from M. lochheadii on reproductive isolation. Based on an intron splice site PCR screen, we selected 26 isolates for further study. The sequence of the region that includes the complete internal transcribed spacer/5.8S rRNA gene segment as well as the D1/D2 domains of the large subunit rRNA gene contained three polymorphic segments and 14 haplotypes were identified. Of these, a single divergent isolate from the southernmost of four sampled localities exhibited diminished mating success when crossed with others. We describe two varieties, Metschnikowia matae var. matae sp. nov. var. nov. (type UFMG-CM-Y395(T), CBS 13986(T), NRRL Y-63736(T); allotype UFMG-CM-Y391(A), CBS 13987(A), NRRL Y-63735(A)) and Metschnikowia matae var. maris sp. nov. var. nov. (type UFMG-CM-Y397(T), CBS 13985(T), NRRL Y-63737(T)). We also report on the discovery of the h (+) mating type of Candida ipomoeae and transfer of the species to Metschnikowia ipomoeae comb. nov. (allotype UWOPS 12-660.1(A), CBS 13988(A), NRRL Y-63738(A)).


Subject(s)
Metschnikowia/classification , Metschnikowia/isolation & purification , Animals , Brazil , Cluster Analysis , Coleoptera/microbiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Helminth/chemistry , DNA, Helminth/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Flowers/microbiology , Forests , Haplotypes , Metschnikowia/cytology , Metschnikowia/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal/genetics , RNA, Ribosomal, 5.8S/genetics , Sequence Analysis, DNA , Spores, Fungal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...