Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(18): 182701, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759192

ABSTRACT

The efficiency of the weak s process in low-metallicity rotating massive stars depends strongly on the rates of the competing ^{17}O(α,n)^{20}Ne and ^{17}O(α,γ)^{21}Ne reactions that determine the potency of the ^{16}O neutron poison. Their reaction rates are poorly known in the astrophysical energy range of interest for core helium burning in massive stars because of the lack of spectroscopic information (partial widths, spin parities) for the relevant states in the compound nucleus ^{21}Ne. In this Letter, we report on the first experimental determination of the α-particle spectroscopic factors and partial widths of these states using the ^{17}O(^{7}Li,t)^{21}Ne α-transfer reaction. With these the ^{17}O(α,n)^{20}Ne and ^{17}O(α,γ)^{21}Ne reaction rates were evaluated with uncertainties reduced by a factor more than 3 with respect to previous evaluations and the present ^{17}O(α,n)^{20}Ne reaction rate is more than 20 times larger. The present (α,n)/(α,γ) rate ratio favors neutron recycling and suggests an enhancement of the weak s process in the Zr-Nd region by more than 1.5 dex in metal-poor rotating massive stars.

2.
Phys Rev Lett ; 110(3): 032501, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373914

ABSTRACT

The decay of (19)O(ß(-)) and (19)Ne(ß(+)) implanted in niobium in its superconducting and metallic phases was measured using purified radioactive beams produced by the SPIRAL GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within a 1σ error bar. This measurement casts strong doubts on the predicted strong electron screening in a superconductor, the so-called superscreening. The measured difference in screening potential energy is 110(90) eV for (19)Ne and 400(320) eV for (19)O. Precise determinations of the half-lives were obtained for (19)O, 26.476(9) s, and for (19)Ne, 17.254(5) s.

3.
Phys Rev Lett ; 107(10): 102502, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21981498

ABSTRACT

The two protons emitted in the decay of 54Zn have been individually observed for the first time in a time projection chamber. The total decay energy and the half-life measured in this work agree with the results obtained in a previous experiment. Angular and energy correlations between the two protons are determined and compared to theoretical distributions of a three-body model. Within the shell model framework, the relative decay probabilities show a strong contribution of the p2 configuration for the two-proton emission. After 45Fe, the present result on 54Zn constitutes only the second case of a direct observation of the ground state two-proton decay of a long-lived isotope.

4.
Phys Rev Lett ; 102(16): 162503, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518704

ABSTRACT

Six proton-emitting states in 19Ne were studied through the inelastic scattering reaction H(19Ne,p);{19}Ne; (p)18F. Their energies and widths were derived from the protons detected at zero degree, while proton-proton angular correlations between the detector at zero degree and a segmented annular detector were used to determine their spin value. In addition to the known states, a new broad J=1/2 resonance has been evidenced at E_{x} approximately 7.9 MeV, approximately 1.45 MeV above the proton emission threshold. By introducing this resonance, the 18F(p,alpha)15O destruction rate in novae is significantly enhanced. This reduces the chance to observe the cosmic gamma-ray emission of 18F from novae in space telescopes.

5.
Phys Rev Lett ; 99(10): 102501, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17930383

ABSTRACT

The decay of the ground-state two-proton emitter 45Fe was studied with a time-projection chamber and the emission of two protons was unambiguously identified. The total decay energy and the half-life measured in this work agree with the results from previous experiments. The present result constitutes the first direct observation of the individual protons in the two-proton decay of a long-lived ground-state emitter. In parallel, we identified for the first time directly two-proton emission from 43Cr, a known beta-delayed two-proton emitter. The technique developed in the present work opens the way to a detailed study of the mechanism of ground state as well as beta-delayed two-proton radioactivity.

6.
Phys Rev Lett ; 96(23): 232501, 2006 Jun 16.
Article in English | MEDLINE | ID: mdl-16803374

ABSTRACT

The reduced transition probabilities B(E2;0(+) --> 2(+)(1)) of the neutron-rich (74)Zn and (70)Ni nuclei have been measured by Coulomb excitation in a (208)Pb target at intermediate energy. These nuclei have been produced at Grand Accélérateur National d'Ions Lourds via interactions of a 60A MeV (76)Ge beam with a Be target. The B(E2) value for (70)Ni(42) is unexpectedly large, which indicates that neutrons added above N=40 strongly polarize the Z=28 proton core. In the Zn isotopic chain, the steep rise of B(E2) values beyond N=40 continues up to (74)Zn(44). The enhanced proton core polarization in (70)Ni is attributed to the monopole interaction between the neutron in the g(9/2) and protons in the f(7/2) and f(5/2) spin-orbit partner orbitals. This interaction could result in a weakening of magicity in (78)Ni(50).

7.
Phys Rev Lett ; 90(8): 082502, 2003 Feb 28.
Article in English | MEDLINE | ID: mdl-12633421

ABSTRACT

A new isomeric 0(+) state was identified as the first excited state in the self-conjugate (N=Z) nucleus 72Kr. By combining for the first time conversion-electron and gamma-ray spectroscopy with the production of metastable states in high-energy fragmentation, the electric-monopole decay of the new isomer to the ground state was established. The new 0(+) state is understood as the band head of the known prolate rotational structure, which strongly supports the interpretation that 72Kr is one of the rare nuclei having an oblate-deformed ground state. This observation gives in fact the first evidence for a shape isomer in a N=Z nucleus.

8.
Phys Rev Lett ; 89(10): 102501, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12225187

ABSTRACT

In an experiment at the SISSI-LISE3 facility of GANIL, the decay of the proton drip line nucleus 45Fe has been studied. Fragment-implantation events have been correlated with radioactive decay events in a 16x16 pixel silicon-strip detector. The decay-energy spectrum of 45Fe implants shows a distinct peak at (1.14+/-0.04) MeV with a half-life of T(1/2)=(4.7(+3.4)(-1.4)) ms. None of the events in this peak is in coincidence with beta particles. For a longer correlation interval, daughter decays of the two-proton daughter 43Cr can be observed after 45Fe implantation. The decay energy for 45Fe agrees nicely with several theoretical predictions for two-proton radioactivity.

9.
Phys Rev Lett ; 88(9): 092501, 2002 Mar 04.
Article in English | MEDLINE | ID: mdl-11863997

ABSTRACT

The neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy. The B(E2) value for (68)Ni(40) is unexpectedly small. An analysis in terms of large scale shell model calculations stresses the importance of proton core excitations to reproduce the B(E2) values and indicates the erosion of the N = 40 harmonic-oscillator subshell by neutron-pair scattering.

10.
Phys Rev Lett ; 84(6): 1116-9, 2000 Feb 07.
Article in English | MEDLINE | ID: mdl-11017457

ABSTRACT

In an experiment at the SISSI/LISE3 facility of GANIL, we used the projectile fragmentation of a primary 58Ni26+ beam at 74.5 MeV/nucleon with an average current of 3 &mgr;A on a natural nickel target to produce very neutron-deficient isotopes. In a 10-day experiment, 287 42Cr isotopes, 53 45Fe isotopes, 106 49Ni isotopes, and 4 48Ni isotopes were unambiguously identified. The doubly magic nucleus 48Ni, observed for the first time, is the most proton-rich isotope ever identified with an isospin projection T(z) = -4. It is probably the last doubly magic nucleus with "classical" shell closures accessible for present-day facilities. Its observation allows us to deduce a lower limit for the half-life of 48Ni of 0.5 &mgr;s.

11.
Phys Rev Lett ; 84(18): 4056-9, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10990609

ABSTRACT

The ground state of the proton-rich, unbound nucleus 11N was observed, together with six excited states using the multinucleon transfer reaction 10B(14N,13B)11N at 30A MeV incident energy at Grand Accelerateur National d'Ions Lourds. Levels of 11N are observed as well defined resonances in the spectrum of the 13B ejectiles. They are localized at 1.63(5), 2.16(5), 3.06(8), 3.61(5), 4.33(5), 5.98(10), and 6.54(10) MeV above the 10C+p threshold. The ground-state resonance has a mass excess of 24.618(50) MeV; the experimental width is smaller than theoretical predictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...