Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nutr Diabetes ; 14(1): 46, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902253

ABSTRACT

BACKGROUND: Dietary-resistant starch is emerging as a potential therapeutic tool to limit the negative effects of diabetes on the kidneys. However, its metabolic and immunomodulatory effects have not yet been fully elucidated. METHODS: Six-week-old db/db mice were fed a diet containing 12.5% resistant starch or a control diet matched for equivalent regular starch for 10 weeks. db/m mice receiving the control diet were utilised as non-diabetic controls. Freshly collected kidneys were digested for flow cytometry analysis of immune cell populations. Kidney injury was determined by measuring albuminuria, histology, and immunohistochemistry. Portal vein plasma was collected for targeted analysis of microbially-derived metabolites. Intestinal histology and tight junction protein expression were assessed. RESULTS: Resistant starch limited the development of albuminuria in db/db mice. Diabetic db/db mice displayed a decline in portal vein plasma levels of acetate, propionate, and butyrate, which was increased with resistant starch supplementation. Diabetic db/db mice receiving resistant starch had a microbially-derived metabolite profile similar to that of non-diabetic db/m mice. The intestinal permeability markers lipopolysaccharide and lipopolysaccharide binding protein were increased in db/db mice consuming the control diet, which was not seen in db/db mice receiving resistant starch supplementation. Diabetes was associated with an increase in the kidney neutrophil population, neutrophil activation, number of C5aR1+ neutrophils, and urinary complement C5a excretion, all of which were reduced with resistant starch. These pro-inflammatory changes appear independent of fibrotic changes in the kidney. CONCLUSIONS: Resistant starch supplementation in diabetes promotes beneficial circulating microbially-derived metabolites and improves intestinal permeability, accompanied by a modulation in the inflammatory profile of the kidney including neutrophil infiltration, complement activation, and albuminuria. These findings indicate that resistant starch can regulate immune and inflammatory responses in the kidney and support the therapeutic potential of resistant starch supplementation in diabetes on kidney health.


Subject(s)
Albuminuria , Diabetic Nephropathies , Kidney , Neutrophil Infiltration , Animals , Mice , Kidney/metabolism , Male , Neutrophil Infiltration/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/diet therapy , Resistant Starch/pharmacology , Gastrointestinal Microbiome/drug effects , Starch/pharmacology , Diabetes Mellitus, Experimental/metabolism , Mice, Inbred C57BL
2.
Sci Adv ; 7(14)2021 03.
Article in English | MEDLINE | ID: mdl-33789895

ABSTRACT

Intake of processed foods has increased markedly over the past decades, coinciding with increased microvascular diseases such as chronic kidney disease (CKD) and diabetes. Here, we show in rodent models that long-term consumption of a processed diet drives intestinal barrier permeability and an increased risk of CKD. Inhibition of the advanced glycation pathway, which generates Maillard reaction products within foods upon thermal processing, reversed kidney injury. Consequently, a processed diet leads to innate immune complement activation and local kidney inflammation and injury via the potent proinflammatory effector molecule complement 5a (C5a). In a mouse model of diabetes, a high resistant starch fiber diet maintained gut barrier integrity and decreased severity of kidney injury via suppression of complement. These results demonstrate mechanisms by which processed foods cause inflammation that leads to chronic disease.


Subject(s)
Inflammation , Renal Insufficiency, Chronic , Animals , Diet , Female , Food , Humans , Inflammation/etiology , Male , Mice , Permeability
3.
Best Pract Res Clin Endocrinol Metab ; 35(3): 101507, 2021 05.
Article in English | MEDLINE | ID: mdl-33642218

ABSTRACT

Diabetes is a metabolic condition. The composition of the gut microbiota is altered in diabetes with reduced levels of short chain fatty acids (SCFA) producers, notably butyrate. Butyrate is associated with a number of beneficial effects including promoting the integrity of the gastrointestinal barrier. Diabetes may lead to an increase in the permeability of the gut barrier, which is thought to contribute to systemic inflammation and worsen the microvascular complications of diabetes. Prebiotics, non-digestible carbohydrates, are fermented by the colonic microbiota leading to the production of a range of metabolites including SCFAs. Thus, prebiotics represent a dietary approach to increase levels of microbially produced SCFAs and improve intestinal permeability in diabetes. Whether prebiotics can lead to a reduction in the risk of developing diabetes complications in individuals with type 2 diabetes needs to be explored.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Permeability , Prebiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...