Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 10(3): 034001, 2023 May.
Article in English | MEDLINE | ID: mdl-37223635

ABSTRACT

Purpose: Image denoising based on deep neural networks (DNN) needs a big dataset containing digital breast tomosynthesis (DBT) projections acquired in different radiation doses to be trained, which is impracticable. Therefore, we propose extensively investigating the use of synthetic data generated by software for training DNNs to denoise DBT real data. Approach: The approach consists of generating a synthetic dataset representative of the DBT sample space by software, containing noisy and original images. Synthetic data were generated in two different ways: (a) virtual DBT projections generated by OpenVCT and (b) noisy images synthesized from photography regarding noise models used in DBT (e.g., Poisson-Gaussian noise). Then, DNN-based denoising techniques were trained using a synthetic dataset and tested for denoising physical DBT data. Results were evaluated in quantitative (PSNR and SSIM measures) and qualitative (visual analysis) terms. Furthermore, a dimensionality reduction technique (t-SNE) was used for visualization of sample spaces of synthetic and real datasets. Results: The experiments showed that training DNN models with synthetic data could denoise DBT real data, achieving competitive results to traditional methods in quantitative terms but showing a better balance between noise filtering and detail preservation in a visual analysis. T-SNE enables us to visualize if synthetic and real noises are in the same sample space. Conclusion: We propose a solution for the lack of suitable training data to train DNN models for denoising DBT projections, showing that we just need the synthesized noise to be in the same sample space as the target image.

2.
Sensors (Basel) ; 22(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36560385

ABSTRACT

(1) Background: The research area of video surveillance anomaly detection aims to automatically detect the moment when a video surveillance camera captures something that does not fit the normal pattern. This is a difficult task, but it is important to automate, improve, and lower the cost of the detection of crimes and other accidents. The UCF-Crime dataset is currently the most realistic crime dataset, and it contains hundreds of videos distributed in several categories; it includes a robbery category, which contains videos of people stealing material goods using violence, but this category only includes a few videos. (2) Methods: This work focuses only on the robbery category, presenting a new weakly labelled dataset that contains 486 new real-world robbery surveillance videos acquired from public sources. (3) Results: We have modified and applied three state-of-the-art video surveillance anomaly detection methods to create a benchmark for future studies. We showed that in the best scenario, taking into account only the anomaly videos in our dataset, the best method achieved an AUC of 66.35%. When all anomaly and normal videos were taken into account, the best method achieved an AUC of 88.75%. (4) Conclusion: This result shows that there is a huge research opportunity to create new methods and approaches that can improve robbery detection in video surveillance.


Subject(s)
Crime , Theft , Humans , Benchmarking , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...