Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Health Res ; 33(12): 1591-1603, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35951754

ABSTRACT

Propolis is a resinous substance collected by bees (Apis mellifera). It is used for its biological properties. This natural product is available as a safe therapeutic option. Herein, we report the antiviral effects of brown propolis extract from Mexico and green and red propolis extracts from Brazil, as well as their phenolic compounds (quercetin, caffeic acid, and rutin) in preventing infection of MRC-5 cells by HCoV-229E. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. All samples studied showed antiviral activity. Green and brown propolis extracts, and quercetin exhibited the best EC50 values with values of 19.080, 11.240, and 77.208 µg/mL against HCoV-229E, respectively, and with TC50 of 62.19, 29.192, and 298 µg/mL on MRC-5 cells, respectively. These results are the first in vitro study of the effects of propolis on HCoV-229E and provide the basis for the development of natural formulations against other coronavirus strains.


Subject(s)
Coronavirus 229E, Human , Propolis , Humans , Animals , Propolis/pharmacology , Brazil , Quercetin/pharmacology , Mexico , Phenols/pharmacology , Antiviral Agents/pharmacology
2.
Vet Sci ; 7(2)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326275

ABSTRACT

Infectious causes of myositis are reported relatively uncommonly in horses. Among them, bacterial causes include Streptococcus equi subsp. zooepidemicus, Actinobacillus equuli, Fusobacterium spp. Staphylococcus spp, and Corynebacterium pseudotuberculosis. Infection can be spread to muscles via haematogenous or extension from skin lesions. Parasitic myositis has also been documented. In this report, a 12 year-old Italian Quarter Horse mare presented with diffuse subcutaneous nodules and masses ranging from 2 × 3 to 5 × 20 cm in size, and adherent to subcutis and muscles that were first macroscopically and cytologically diagnosed as pyogranulomas. Subsequently, histological, molecular, bacteriological, and biochemical investigations were performed. All the data obtained allowed to diagnose a severe and diffuse multibacterial granulomatous myositis caused by Corynebacterium pseudotuberculosis and Corynebacterium amycolatum. Following the therapy and an initial disappearance of most of the lesions together with a general improvement of the mare, the clinical condition deteriorated, and new nodules appeared. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and PCR techniques revealed the presence of bacteria as Glutamicibacter creatinolyticus and Dietzia spp. To the authors' knowledge, this case report represents the first description of multibacterial granulomatous myositis due to Corynebacterium pseudotuberculosis, Corynebacterium amycolatum, Glutamicibacter creatinolyticus, and Dietzia spp. in a horse reared in Italy.

4.
BMC Genomics ; 20(1): 663, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31429699

ABSTRACT

BACKGROUND: Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS: Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION: Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , Corynebacterium pseudotuberculosis/metabolism , Gene Expression Profiling , Iron Deficiencies , Corynebacterium pseudotuberculosis/growth & development , Corynebacterium pseudotuberculosis/physiology , Gene Regulatory Networks , Genomic Islands/genetics , Microbial Viability/genetics , Mutation , Transcription, Genetic
5.
Gene ; 677: 349-360, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30098432

ABSTRACT

Corynebacterium pseudotuberculosis has been widely studied in an effort to understand its biological evolution. Transcriptomics has revealed possible candidates for virulence and pathogenicity factors of strain 1002 (biovar Ovis). Because C. pseudotuberculosis is classified into two biovars, Ovis and Equi, it was interesting to assess the transcriptional profile of biovar Equi strain 258, the causative agent of ulcerative lymphangitis. The genome of this strain was re-sequenced; the reassembly was completed using optical mapping technology, and the sequence was subsequently re-annotated. Two growth conditions that occur during the host infection process were simulated for the transcriptome: the osmotic and acid medium. Genes that may be associated with the microorganism's resilience under unfavorable conditions were identified through RNAseq, including genes present in pathogenicity islands. The RT-qPCR was performed to confirm the results in biological triplicate for each condition for some genes. The results extend our knowledge of the factors associated with the spread and persistence of C. pseudotuberculosis during the infection process and suggest possible avenues for studies related to the development of vaccines, diagnosis, and therapies that might help minimize damage to agribusinesses.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , Stress, Physiological/genetics , Transcriptome/genetics , Animals , Bacterial Proteins/genetics , Corynebacterium Infections/microbiology , Gene Expression Profiling/methods , Genome, Bacterial/genetics , Sheep , Virulence/genetics , Virulence Factors/genetics
6.
BMC Genomics ; 15: 14, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24405787

ABSTRACT

BACKGROUND: The completion of whole-genome sequencing for Corynebacterium pseudotuberculosis strain 1002 has contributed to major advances in research aimed at understanding the biology of this microorganism. This bacterium causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death. In the current study, we simulated the conditions experienced by the bacteria during host infection. By sequencing transcripts using the SOLiDTM 3 Plus platform, we identified new targets expected to potentiate the survival and replication of the pathogen in adverse environments. These results may also identify possible candidates useful for the development of vaccines, diagnostic kits or therapies aimed at the reduction of losses in agribusiness. RESULTS: Under the 3 simulated conditions (acid, osmotic and thermal shock stresses), 474 differentially expressed genes exhibiting at least a 2-fold change in expression levels were identified. Important genes to the infection process were induced, such as those involved in virulence, defence against oxidative stress, adhesion and regulation, and many genes encoded hypothetical proteins, indicating that further investigation of the bacterium is necessary. The data will contribute to a better understanding of the biology of C. pseudotuberculosis and to studies investigating strategies to control the disease. CONCLUSIONS: Despite the veterinary importance of C. pseudotuberculosis, the bacterium is poorly characterised; therefore, effective treatments for caseous lymphadenitis have been difficult to establish. Through the use of RNAseq, these results provide a better biological understanding of this bacterium, shed light on the most likely survival mechanisms used by this microorganism in adverse environments and identify candidates that may help reduce or even eradicate the problems caused by this disease.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , Genes, Bacterial , Stress, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium pseudotuberculosis/metabolism , Down-Regulation , Hydrogen-Ion Concentration , Osmotic Pressure , RNA, Untranslated/metabolism , Sequence Analysis, DNA , Sigma Factor/genetics , Sigma Factor/metabolism , Temperature , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...