Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 240: 109791, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253307

ABSTRACT

The cornea is a fundamental ocular tissue for the sense of sight. Thanks to it, the refraction of two-thirds of light manages to participate in the visual process and protect against mechanical damage. Because it is transparent, avascular, and innervated, the cornea comprises five main layers: Epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Each layer plays a key role in the functionality and maintenance of ocular tissue, providing unique ultrastructural and biomechanical properties. Bullous Keratopathy (BK) is an endothelial dysfunction that leads to corneal edema, loss of visual acuity, epithelial blisters, and severe pain, among other symptoms. The corneal layers are subject to changes in their biophysical properties promoted by Keratopathy. In this context, the Atomic Force Microscopy (AFM) technique in air was used to investigate the anterior epithelial surface and the posterior endothelial surface, healthy and with BK, using a triangular silicone tip with a nominal spring constant of 0.4 N/m. Six human corneas (n = 6) samples were used for each analyzed group. Roughness data, calculated by third-order polynomial adjustment, adhesion, and Young's modulus, were obtained to serve as a comparison and identification of morphological and biomechanical changes possibly associated with the pathology, such as craters and in the epithelial layer and exposure of a fibrotic layer due to loss of the endothelial cell wall. Endothelial cell membrane area and volume data were calculated, obtaining a relevant comparison between the control and patient. Such results may provide new data on the physical properties of the ocular tissue to understand the physiology of the cornea when it has pathology.


Subject(s)
Corneal Diseases , Corneal Edema , Humans , Endothelium, Corneal/metabolism , Descemet Membrane/metabolism , Corneal Edema/metabolism , Cornea/pathology , Corneal Diseases/pathology
2.
Curr Eye Res ; 37(7): 567-74, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22587017

ABSTRACT

PURPOSE: To evaluate the in vivo and in vitro toxicity of sunitinib malate, a multikinase inhibitor molecule. DESIGN: Experimental, Prospective, Controlled. METHODS: Human retinal pigment epithelial (ARPE-19) and human umbilical vein endothelialcells (HUVECS) were used in a culture toxicity test and exposed to different concentrations of sunitinib malate for 18 hours. The HUVECs also were cultured to evaluate the angiogenesis inhibitory effect of sunitinib malate. Fundus photography and angiographic, electrophysiologic, and histopathologic evaluations with light and electron microscopy were performed in two groups of five rabbits each that received different intravitreal concentrations of the drug. Each rabbit received 0.1 ml of sunitinib malate in the right eye (one group with 12.5 mg/ml, the other group with 25 mg/ml); all animals received 0.1 ml of physiologic saline solution in the left eye. After sacrifice, the eyes were enucleated and fixed with modified Karnovsky solution. RESULTS: No toxicity related to sunitinib malate was observed using an in vitro model with the 12.5 and 25 mg/ml solutions in HUVEC and ARPE cell cultures. No toxicity was observed in the in vivo model with 12.5 mg/ml, but light microscopy showed that the 25 mg/ml solution damaged the photoreceptors layer. No functional changes in the electroretinogram were observed in any group. CONCLUSIONS: Sunitinib malate 12.5 mg/ml caused no toxicity in in vivo and in vitro models, but the 25 mg/ml concentration caused retinal changes suggesting toxicity in the in vivo model. Further research with the drug is needed in models of ocular neovascularization.


Subject(s)
Angiogenesis Inhibitors/toxicity , Antineoplastic Agents/toxicity , Endothelium, Vascular/drug effects , Indoles/toxicity , Photoreceptor Cells, Vertebrate/drug effects , Pyrroles/toxicity , Retinal Pigment Epithelium/drug effects , Animals , Cell Count , Cell Line , Dose-Response Relationship, Drug , Electroretinography/drug effects , Fluorescein Angiography , Humans , Intravitreal Injections , Photoreceptor Cells, Vertebrate/ultrastructure , Protein-Tyrosine Kinases/antagonists & inhibitors , Rabbits , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/ultrastructure , Sunitinib , Umbilical Veins/cytology
3.
Am J Ophthalmol ; 149(2): 265-77, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19896637

ABSTRACT

PURPOSE: To evaluate the ability of novel dyes to stain lens capsule (LC), internal limiting membrane (ILM), epiretinal membrane (ERM), and vitreous. DESIGN: Experimental study in animal and human donor eyes. METHODS: Thirteen dyes, methyl violet, crystal violet, eosin Y, sudan black B, methylene blue, toluidine blue, light green, indigo carmine, fast green, congo red, evans blue, brilliant blue, and bromophenol blue, were injected onto the LC and ILM of enucleated porcine eyes. The vitreous was stained with 2 mL of dyes for 1 minute. Six dyes (indigo carmine, evans blue, fast green, light green, bromophenol blue, and brilliant blue) were selected for experiments in human donor eyes and freshly removed ERM. RESULTS: In the porcine eyes, ILM staining with methylene blue, toluidine blue, indigo carmine, evans blue, bromophenol blue, and fast green was moderate, and methyl violet, crystal violet, brilliant blue, or sudan black resulted in strong staining. Methyl violet, crystal violet, sudan black, toluidine blue, and methylene blue caused histologic damage in porcine retinas. Vitreous examination revealed moderate staining with congo red, crystal violet, fast green, eosin Y, methylene blue, toluidine blue, brilliant blue, bromophenol blue, and methyl violet and strong staining with light green and evans blue. ERMs showed strong staining with 0.5% evans blue and moderate staining with 0.5% light green, fast green, brilliant blue, and bromophenol blue. Evaluation of donor eyes disclosed moderate staining with evans blue, light green, and bromophenol blue and strong staining with 0.5% brilliant blue. Moderate or strong staining of the vitreous occurred with most dyes. LC evaluation showed moderate staining with 0.5% evans blue, fast green, and brilliant blue, whereas 0.5% light green produced strong LC staining. CONCLUSIONS: Brilliant blue shows the best ILM staining, whereas bromophenol blue, evans blue, and light green also stain ILM. Most dyes bind well to LC, vitreous, and ERM.


Subject(s)
Basement Membrane/anatomy & histology , Coloring Agents , Epiretinal Membrane/diagnosis , Lens Capsule, Crystalline/anatomy & histology , Vitreous Body/anatomy & histology , Animals , Basement Membrane/drug effects , Coloring Agents/toxicity , Epiretinal Membrane/drug therapy , Humans , Lens Capsule, Crystalline/drug effects , Staining and Labeling/methods , Swine , Tissue Donors , Vitreous Body/drug effects
4.
Retina ; 29(4): 497-510, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19174713

ABSTRACT

PURPOSE: To investigate the retinal biocompatibility of six novel vital dyes for chromovitrectomy. METHODS: An amount of 0.05 mL of 0.5% and 0.05% light green (LG), fast green (FG), Evans blue (EB), brilliant blue (BriB), bromophenol blue (BroB), or indigo carmine (IC) was injected intravitreally in the right eye, whereas in the left eye balanced salt solution was applied for control in rabbits' eyes. Clinical examination, fluorescein angiography, histology with light microscopy, and transmission electron microscopy were performed after 1 and 7 days. Retinal cell layers were evaluated for morphologic alterations and number of cells. The electroretinographic changes were assessed at baseline, 24 hours and 7 days. RESULTS: Fluorescein angiography disclosed hypofluorescent spots only in the 0.5% EB group. Light microscopy and transmission electron microscopy disclosed slight focal morphologic changes in eyes exposed to 0.05% IC, FG, BriB, similar to the control at 1 and 7 days. In the lower dose groups, EB, LG, and BroB caused substantial retinal alterations by light microscopy. At the higher dose, BroB and EB produced diffuse cellular edema and vacuolization within the ganglion cells, bipolar cells, and photoreceptors. FG and IC at 0.5% caused slight retinal alterations similar to balanced salt solution injection. LG at 0.5% caused diffuse vacuolization of bipolar cells after 1 and 7 days. Injection of 0.5% EB caused a significant decrease in neuroretinal cell counts in comparison to control eyes in the 7-day examination (P < 0.05). Electroretinography revealed intermittent prolonged latency and decreased amplitude in eyes injected with 0.5% EB, LG, BriB, and BroB, while at the lower dose, only LG and EB induced few functional changes. CONCLUSION: The progressive order of retinal biocompatibility, from safest to most toxic, was IC, FG, BriB, BroB, LG, EB.


Subject(s)
Coloring Agents/pharmacology , Materials Testing , Retina/drug effects , Vitrectomy/methods , Animals , Cell Count , Coloring Agents/administration & dosage , Coloring Agents/toxicity , Dose-Response Relationship, Drug , Edema/chemically induced , Electroretinography , Fluorescein Angiography , Injections , Male , Microscopy, Electron , Rabbits , Reaction Time/drug effects , Retina/pathology , Retina/physiopathology , Retinal Diseases/chemically induced , Vacuoles/pathology , Vitreous Body
SELECTION OF CITATIONS
SEARCH DETAIL
...