Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sleep Res ; 32(2): e13716, 2023 04.
Article in English | MEDLINE | ID: mdl-36053904

ABSTRACT

The pathophysiology of the restless legs syndrome (RLS) is related to dopaminergic dysfunction, reduced iron and variations in gene expression, such as the protein tyrosine phosphatase receptor type delta gene (PTPRD). Animal models could be key to achieving a mechanistic understanding of RLS and to facilitate efficient platforms for evaluating new therapeutics. Thus, the aim of this study was to evaluate the expression of PTPRD, of genes and proteins associated with RLS, the sleep patterns and the cardiovascular parameters in an animal model of RLS (spontaneously hypertensive rat [SHR]). Rats were divided into two groups: (i) Wistar-Kyoto and (ii) SHR. Cardiovascular parameters were assessed by tail plethysmography. Polysomnography was used to analyse the sleep pattern (24 h). For the PTPRD analyses, quantitative polymerase chain reaction (qPCR) and indirect enzyme-linked immunosorbent assay (ELISA) techniques were used. To evaluate the tyrosine hydroxylase enzyme, dopamine transporter (DAT) and type 2 dopaminergic receptor, qPCR and Western Blotting techniques were used. For the quantification of iron, ferritin and transferrin, the ELISA method was used. SHRs had higher blood pressure, alterations in sleep pattern, lower expression of protein content of PTPRD, lower expression of DAT, and lower serum concentrations of ferritin. These data suggest that the behavioural, physiological, and molecular changes observed in SHRs provide a useful animal model of RLS, reinforcing the importance of this strain as an animal model of this sleep disorder.


Subject(s)
Restless Legs Syndrome , Rats , Animals , Restless Legs Syndrome/genetics , Rats, Inbred WKY , Iron , Dopamine , Ferritins , Models, Animal , Rats, Inbred SHR , Protein Tyrosine Phosphatases
2.
J Muscle Res Cell Motil ; 43(1): 35-44, 2022 03.
Article in English | MEDLINE | ID: mdl-35084659

ABSTRACT

Acute metabolic and molecular response to exercise may vary according to exercise's intensity and duration. However, there is a lack regarding specific tissue alterations after acute exercise with aerobic or anaerobic predominance. The present study investigated the effects of acute exercise performed at different intensities, but with equal total load on molecular and physiological responses in swimming rats. Sixty male rats were divided into a control group and five groups performing an acute bout of swimming exercise at different intensities (80, 90, 100, 110 and 120% of anaerobic threshold [AnT]). The exercise duration of each group was balanced so all groups performed at the same total load. Gene expression (HIF-1α, PGC-1α, MCT1 and MCT4 mRNA), blood biomarkers and tissue glycogen depletion were analyzed after the exercise session. ANOVA One-Way was used to indicate statistical mean differences considering 5% significance level. Blood lactate concentration was the only biomarker sensitive to acute exercise, with a significant increase in rats exercised above AnT intensities (p < 0.000). Glycogen stores of gluteus muscle were significantly reduced in all exercised animals in comparison to control group (p = 0.02). Hepatic tissue presented significant reduction in glycogen in animals exercised above AnT (p = 0.000, as well as reduced HIF-1α mRNA and increased MCT1 mRNA, especially at the highest intensity (p = 0.002). Physiological parameters did not alter amongst groups for most tissues. Our results indicate the hepatic tissue alterations (glycogen stores and gene expressions) in response to different exercise intensities of exercise, even with the total load matched.


Subject(s)
Physical Conditioning, Animal , Swimming , Anaerobic Threshold , Animals , Glycogen/metabolism , Male , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism , Rats , Swimming/physiology
3.
Nutr Metab (Lond) ; 14: 16, 2017.
Article in English | MEDLINE | ID: mdl-28239403

ABSTRACT

BACKGROUND: Nutritional status in early life is critically involved in the metabolic phenotype of offspring. However the changes triggered by maternal consumption of high-fat diet (HFD) in pre- or postnatal period should be better understood. Here we evaluated whether maternal HFD consumption during gestation and lactation could differently affect liver miR-122 and miR-370 expression leading to metabolic damages observed in offspring. Moreover, we investigate whether early overnutrition program offspring to more harmful response to HFD in later life. METHODS: Female mice were fed either a standard chow (SC) diet or a HFD three weeks before and during mating, gestation and/or lactation. Offspring were evaluated on the delivery day (d0), in a cross-fostering model at day 28 (d28) and in adult life, after a re-challenge with a HFD (d82). RESULTS: In vitro analysis using liver cell line showed that palmitate could induced decrease in miR-122 and increase in miR-370 expression. Newborn pups (d0) from obese dams showed a decrease in lipid oxidation markers (Cpt1a and Acadvl), an increase in triacylglycerol synthesis markers (Agpat and Gpam), as well as lower miR-122 and higher miR-370 hepatic content that was inversely correlated to maternal serum NEFA and TAG. Pups fostered to SC dams presented an increase in body weight and Agpat/Gpam expression at d28 compared to pups fostered to HFD dams and an inverse correlation was observed between miR-122 hepatic expression and offspring serum TAG. In adult life (d82), the reintroduction of HFD resulted in higher body weight gain and hepatic lipid content. These effects were accompanied by impairment in lipid and glucose metabolism, demonstrated by reduced Cpt1a/Acadvl and increased Agpat/Gpam expression, lower glucose tolerance and insulin sensitivity. CONCLUSION: Our data suggest that both gestational and lactation overnutrition results in metabolic changes that can permanently alter lipid homeostasis in offspring. The presence of fatty acids in maternal blood and milk seem to be responsible for modulating the expression of miR-122 and miR-370, which are involved in liver metabolism. These alterations significantly increase susceptibility to obesity and ectopic lipid accumulation and lead to a more harmful response to HFD in offspring.

SELECTION OF CITATIONS
SEARCH DETAIL
...