Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 13: 866053, 2022.
Article in English | MEDLINE | ID: mdl-35734259

ABSTRACT

The use of more salt stress-tolerant vine rootstocks can be a sustainable strategy for adapting traditional grapevine cultivars to future conditions. However, how the new M1 and M4 rootstocks perform against salinity compared to conventional ones, such as the 1103-Paulsen, had not been previously assessed under real field conditions. Therefore, a field trial was carried out in a young 'Tempranillo' (Vitis vinifera L.) vineyard grafted onto all three rootstocks under a semi-arid and hot-summer Mediterranean climate. The vines were irrigated with two kinds of water: a non-saline Control with EC of 0.8 dS m-1 and a Saline treatment with 3.5 dS m-1. Then, various physiological parameters were assessed in the scion, and, additionally, gene expression was studied by high throughput sequencing in leaf and berry tissues. Plant water relations evidenced the osmotic effect of water quality, but not that of the rootstock. Accordingly, leaf-level gas exchange rates were also reduced in all three rootstocks, with M1 inducing significantly lower net photosynthesis rates than 1103-Paulsen. Nevertheless, the expression of groups of genes involved in photosynthesis and amino acid metabolism pathways were not significantly and differentially expressed. The irrigation with saline water significantly increased leaf chloride contents in the scion onto the M-rootstocks, but not onto the 1103P. The limitation for leaf Cl- and Na+ accumulation on the scion was conferred by rootstock. Few processes were differentially regulated in the scion in response to the saline treatment, mainly, in the groups of genes involved in the flavonoids and phenylpropanoids metabolic pathways. However, these transcriptomic effects were not fully reflected in grape phenolic ripeness, with M4 being the only one that did not cause reductions in these compounds in response to salinity, and 1103-Paulsen having the highest overall concentrations. These results suggest that all three rootstocks confer short-term salinity tolerance to the scion. The lower transcriptomic changes and the lower accumulation of potentially phytotoxic ions in the scion grafted onto 1103-Paulsen compared to M-rootstocks point to the former being able to maintain this physiological response in the longer term. Further agronomic trials should be conducted to confirm these effects on vine physiology and transcriptomics in mature vineyards.

3.
Sci Total Environ ; 371(1-3): 44-54, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16930681

ABSTRACT

We integrated an index-based attenuation factor/retardation factor (AF/RF) model into a GIS to evaluate the risk of leaching of the most frequently applied herbicides (glyphosate, diuron, diquat, bromacil, simazine, linuron, terbuthylazine, and terbumeton) used in citrus orchards of the Valencia Community, Spain. The GIS-model system was applied to a region of 33,800 ha located near Valencia City. The soil and climate data required by the model were stored in an Arc/Info GIS in which the model algorithms were integrated using the AML programming language. A graphical user interface was developed to facilitate the use of the GIS-model system. The resulting simulation maps indicate that terbumeton, bromacil, and simazine herbicides have the highest risk of leaching because of their high mobility and low K(oc) (32-158 mg l(-1)). The remaining herbicides are strongly adsorbed by clay particles and organic matter, thus minimising the risk of leaching through the soil profile and into groundwater. The obtained ranking of the leaching potential of analysed herbicides is as follows, from highest to lowest risk: terbumeton>bromacil>simazine>terbuthylazine>diuron>linuron>glyphosate>diquat.


Subject(s)
Agriculture , Citrus/growth & development , Environmental Monitoring/methods , Herbicides/analysis , Models, Theoretical , Soil Pollutants/analysis , Risk Assessment , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...