Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1699: 155-178, 2018.
Article in English | MEDLINE | ID: mdl-29086376

ABSTRACT

MicroRNAs (miRNAs) are a family of short noncoding RNA molecules that fine-tune expression of mRNAs. Often their altered expression is associated with a number of diseases, including cancer. Given that miRNAs target multiple genes and "difficult to drug" oncogenes, they present attractive candidates to manipulate as an anti-cancer strategy. MicroRNA-7 (miR-7) is a tumor suppressor miRNA that has been shown to target oncogenes overexpressed in cancers, such as the epidermal growth factor receptor (EGFR) and the nuclear factor-κ B subunit, RelA. Here, we describe methods for evaluating systemic delivery of miR-7 using a lipid nanoparticle formulation in an animal model. The microRNA is delivered three times, over 1 week and tissues collected 24 h after the last injection. RNA and protein are extracted from snap frozen tissues and processed to detect miRNA distribution and subsequent assessment of downstream targets and signaling mediators, respectively. Importantly, variability in efficiency of miRNA delivery will be observed between organs of the same animal and also between animals. Additionally, delivering the microRNA to organs other than the liver, particularly the brain, remains challenging. Furthermore, large variation in miRNA targets is seen both within tissues and across tissues depending on the lysis buffer used for protein extraction. Therefore, analyzing protein expression is dependent upon the method used for isolation and requires optimization for each individual application. Together, these methods will provide a foundation for those planning on assessing the efficacy of delivery of a miRNA in vivo.


Subject(s)
Drug Delivery Systems/methods , MicroRNAs/administration & dosage , MicroRNAs/pharmacokinetics , Nanoparticles/administration & dosage , Animals , ErbB Receptors/genetics , ErbB Receptors/metabolism , Injections, Intravenous , Lipids/chemistry , Mice , Mice, Inbred C57BL , MicroRNAs/chemistry , Nanoparticles/chemistry , Proteins/isolation & purification , RNA/isolation & purification , Tissue Distribution , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
2.
Am J Pathol ; 177(5): 2659-70, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20829433

ABSTRACT

One of the limitations of research into diabetic retinopathy is the lack of suitable animal models. To study how the two important factors--hyperglycemia and vascular endothelial growth factor--interact in diabetic retinopathy, the Akimba mouse (Ins2AkitaVEGF+/-) was generated by crossing the Akita mouse (Ins2Akita) with the Kimba mouse (VEGF+/+). C57Bl/6 and the parental and Akimba mouse lines were characterized by biometric measurements, histology, immunohistochemistry, and Spectralis Heidelberg retinal angiography and optical coherence tomography. The Akimba line not only retained the characteristics of the parental strains, such as developing hyperglycemia and retinal neovascularization, but developed higher blood glucose levels at a younger age and had worse kidney-body weight ratios than the Akita line. With aging, the Akimba line demonstrated enhanced photoreceptor cell loss, thinning of the retina, and more severe retinal vascular pathology, including more severe capillary nonperfusion, vessel constriction, beading, neovascularization, fibroses, and edema, compared with the Kimba line. The vascular changes were associated with major histocompatibility complex class II+ cellular staining throughout the retina. Together, these observations suggest that hyperglycemia resulted in higher prevalences of edema and exacerbated the vascular endothelial growth factor-driven neovascular and retinal changes in the Akimba line. Thus, the Akimba line could become a useful model for studying the interplay between hyperglycemia and vascular endothelial growth factor and for testing treatment strategies for potentially blinding complications, such as edema.


Subject(s)
Disease Models, Animal , Hyperglycemia/physiopathology , Retinal Neovascularization/physiopathology , Retinal Vessels/physiopathology , Animals , Blood Glucose/metabolism , Body Weight , Humans , Mice , Mice, Inbred C57BL , Retina/anatomy & histology , Retina/metabolism , Retina/pathology , Retinal Neovascularization/pathology , Retinal Vessels/pathology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...