Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Elife ; 122023 06 06.
Article in English | MEDLINE | ID: mdl-37278618

ABSTRACT

Background: While biological age in adults is often understood as representing general health and resilience, the conceptual interpretation of accelerated biological age in children and its relationship to development remains unclear. We aimed to clarify the relationship of accelerated biological age, assessed through two established biological age indicators, telomere length and DNA methylation age, and two novel candidate biological age indicators, to child developmental outcomes, including growth and adiposity, cognition, behavior, lung function and the onset of puberty, among European school-age children participating in the HELIX exposome cohort. Methods: The study population included up to 1173 children, aged between 5 and 12 years, from study centres in the UK, France, Spain, Norway, Lithuania, and Greece. Telomere length was measured through qPCR, blood DNA methylation, and gene expression was measured using microarray, and proteins and metabolites were measured by a range of targeted assays. DNA methylation age was assessed using Horvath's skin and blood clock, while novel blood transcriptome and 'immunometabolic' (based on plasma proteins and urinary and serum metabolites) clocks were derived and tested in a subset of children assessed six months after the main follow-up visit. Associations between biological age indicators with child developmental measures as well as health risk factors were estimated using linear regression, adjusted for chronological age, sex, ethnicity, and study centre. The clock derived markers were expressed as Δ age (i.e. predicted minus chronological age). Results: Transcriptome and immunometabolic clocks predicted chronological age well in the test set (r=0.93 and r=0.84 respectively). Generally, weak correlations were observed, after adjustment for chronological age, between the biological age indicators.Among associations with health risk factors, higher birthweight was associated with greater immunometabolic Δ age, smoke exposure with greater DNA methylation Δ age, and high family affluence with longer telomere length.Among associations with child developmental measures, all biological age markers were associated with greater BMI and fat mass, and all markers except telomere length were associated with greater height, at least at nominal significance (p<0.05). Immunometabolic Δ age was associated with better working memory (p=4 e-3) and reduced inattentiveness (p=4 e-4), while DNA methylation Δ age was associated with greater inattentiveness (p=0.03) and poorer externalizing behaviors (p=0.01). Shorter telomere length was also associated with poorer externalizing behaviors (p=0.03). Conclusions: In children, as in adults, biological aging appears to be a multi-faceted process and adiposity is an important correlate of accelerated biological aging. Patterns of associations suggested that accelerated immunometabolic age may be beneficial for some aspects of child development while accelerated DNA methylation age and telomere attrition may reflect early detrimental aspects of biological aging, apparent even in children. Funding: UK Research and Innovation (MR/S03532X/1); European Commission (grant agreement numbers: 308333; 874583).


Although age is generally measured by the number of years since birth, many factors contribute to the rate at which a person physically ages. In adults, linking these measurements to age gives a measure of overall health and resilience. This 'biological age' offers a better prediction of remaining life and disease risk than the number of years lived. Multiple factors can be used to calculate biological age, such as measuring the length of telomeres ­ protective caps on the end of chromosomes ­ which shorten as people age. The rate at which they shorten can give an indication of how quickly someone is ageing. Researchers can also study epigenetic factors: these mechanisms lead to certain genes being switched on or off, and they can be combined into a 'epigenetic clock' to assess biological age. However, compared with adults, the relationship between biological age and child health and developmental maturity is less well understood. Robinson et al. studied 1,173 school-aged children from six European countries, measuring telomere length, epigenetic factors and other biological indicators related to metabolism and the immune system. The relationships between these factors and an array of child developmental measures such as height, weight, behaviour and the age of onset of puberty were established. The findings showed that biological age indicators are only weakly linked to each other in children. Despite this, biological age was related to greater amount of body fat across all tested indicators ­ which is also associated with biological age in adults and is an important determinant of lifespan. Among several observed effects on development, analysis found that shorter telomere length and older epigenetic age were associated with greater behavioural problems, suggesting they may be detrimental to child development. On the other hand, a greater age due to metabolic and immune related changes was associated with greater cognitive and behavioural maturity. Environmental factors were also linked to biological ageing, with children exposed to smoking in their homes or while their mother was pregnant displaying an older epigenetic age. Robinson et al. showed that biological ageing in children is multifaceted and can have both beneficial and harmful impacts on development. This knowledge is important for identifying early life risk factors that might influence healthy ageing in later life. Future work will help researchers to understand these complex interactions and the long-term consequences for health and well-being.


Subject(s)
Aging , Multiomics , Adult , Humans , Child , Child, Preschool , Infant , Aging/genetics , DNA Methylation , Risk Factors , Obesity/genetics , Biomarkers , Epigenesis, Genetic
2.
Environ Res ; 211: 113109, 2022 08.
Article in English | MEDLINE | ID: mdl-35292243

ABSTRACT

Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Blood Pressure , Child , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Particulate Matter/toxicity
3.
Environ Int ; 155: 106683, 2021 10.
Article in English | MEDLINE | ID: mdl-34144479

ABSTRACT

The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath's Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early age.


Subject(s)
Environmental Pollutants , Exposome , Acceleration , Child , DNA Methylation , Environmental Exposure , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Epigenesis, Genetic , Female , Humans , Pregnancy
4.
Environ Pollut ; 266(Pt 1): 115228, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32763773

ABSTRACT

Exposure to greenspace has been associated with a wide range of health benefits; however, the available evidence on the association of this exposure with telomere length (TL), an early marker of ageing, is still scarce. We investigated the association of greenspace exposure with TL in a sample of 200 preschool children (aged 5-7 years) residing in Sabzevar, Iran (2017). We comprehensively characterized different aspects of greenspace exposure encompassing residential, kindergarten, and total (including both residential and kindergarten) surrounding greenspace (using satellite-derived Normalized Difference Vegetation Index), residential and kindergarten distance to green spaces, time spent in private gardens and public green spaces, and the number of plant pots at home. Relative leukocyte TL (LTL) in blood samples of the study participants was measured using quantitative polymerase chain reaction (qPCR). We applied mixed effects linear regression models with kindergarten and qPCR plate as random effects, to estimate the association of indicators of greenspace exposure (one at a time) with LTL, controlled for relevant covariates. We observed an inverse association between distance from home and kindergarten to green spaces larger than 5000 m2 and LTL. Moreover, higher total surrounding greenspace at 300m and 500m buffers and higher surrounding greenspace at 300m buffer around kindergarten and home were associated with longer LTL. Furthermore, longer time spent (h/week) in the public green spaces was associated with longer LTL. Our findings for residential and kindergarten distance to any green space (regardless of the size), residential surrounding greenspace at 100m and 500m buffers, kindergarten surrounding greenspace at 100m buffer, time spent in private gardens (h/week) and the number of plant pots at home were not conclusive. Our findings were generally suggestive for a positive association between greenspace exposure and LTL in preschool children. More studies are needed to confirm these findings in other settings with different climates and populations.


Subject(s)
Environment , Telomere , Aging , Child , Child, Preschool , Humans , Iran , Leukocytes
5.
Clin Epigenetics ; 12(1): 60, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32354366

ABSTRACT

BACKGROUND: Prenatal inflammation has been proposed as an important mediating factor in several adverse pregnancy outcomes. C-reactive protein (CRP) is an inflammatory cytokine easily measured in blood. It has clinical value due to its reliability as a biomarker for systemic inflammation and can indicate cellular injury and disease severity. Elevated levels of CRP in adulthood are associated with alterations in DNA methylation. However, no studies have prospectively investigated the relationship between maternal CRP levels and newborn DNA methylation measured by microarray in cord blood with reasonable epigenome-wide coverage. Importantly, the timing of inflammation exposure during pregnancy may also result in different effects. Thus, our objective was to evaluate this prospective association of CRP levels measured during multiple periods of pregnancy and in cord blood at delivery which was available in one cohort (i.e., Effects of Aspirin in Gestation and Reproduction trial), and also to conduct a meta-analysis with available data at one point in pregnancy from three other cohorts from the Pregnancy And Childhood Epigenetics consortium (PACE). Secondarily, the impact of maternal randomization to low dose aspirin prior to pregnancy on methylation was assessed. RESULTS: Maternal CRP levels were not associated with newborn DNA methylation regardless of gestational age of measurement (i.e., CRP at approximately 8, 20, and 36 weeks among 358 newborns in EAGeR). There also was no association in the meta-analyses (all p > 0.5) with a larger sample size (n = 1603) from all participating PACE cohorts with available CRP data from first trimester (< 18 weeks gestation). Randomization to aspirin was not associated with DNA methylation. On the other hand, newborn CRP levels were significantly associated with DNA methylation in the EAGeR trial, with 33 CpGs identified (FDR corrected p < 0.05) when both CRP and methylation were measured at the same time point in cord blood. The top 7 CpGs most strongly associated with CRP resided in inflammation and vascular-related genes. CONCLUSIONS: Maternal CRP levels measured during each trimester were not associated with cord blood DNA methylation. Rather, DNA methylation was associated with CRP levels measured in cord blood, particularly in gene regions predominately associated with angiogenic and inflammatory pathways. TRIAL REGISTRATION: Clinicaltrials.gov, NCT00467363, Registered April 30, 2007, http://www.clinicaltrials.gov/ct2/show/NCT00467363.


Subject(s)
Aspirin/administration & dosage , C-Reactive Protein/metabolism , DNA Methylation , Fetal Blood/chemistry , Oligonucleotide Array Sequence Analysis/methods , Pregnancy Trimesters/blood , Adult , Aspirin/adverse effects , CpG Islands/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Female , Gestational Age , Humans , Longitudinal Studies , Maternal Age , Pregnancy , Pregnancy Trimesters/drug effects , Prospective Studies
6.
Sci Total Environ ; 722: 137933, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32213432

ABSTRACT

Exposure to air pollution is associated with adverse health effects; however, the available evidence of its association with telomere length (TL), an early marker of ageing, in children is still scarce with no study available for preschool children. This study aimed to investigate the association of exposure to air pollution and traffic indicators at home and kindergarten with relative leukocyte TL (LTL) in preschool children. This cross-sectional study included 200 preschool children (5-7 years old) recruited from 27 kindergartens in Sabzevar, Iran (2017). Outdoor annual average levels PM1, PM2.5, and PM10 at residential address and kindergartens were estimated applying land use regression (LUR) models. Moreover, indoor levels of PMs at kindergartens were measured for four days in each season resulting in a total of 16 days of measurements for each kindergarten. Total streets length in different buffers and distance to major road were calculated as traffic indicators at residential address and kindergartens. We applied quantitative real-time polymerase chain reaction (qRT-PCR) to measure relative LTL in blood samples obtained from children. Mixed linear regression models were developed with qPCR plate and kindergarten as random effects, to estimate association of each pollutant and traffic indicator with LTL, controlled for relevant covariates. Higher concentrations of outdoor PM1, PM2.5, and PM10, at home and kindergartens were associated with shorter relative LTL. Similarly, increase in indoor PM2.5 concentrations at kindergartens was associated with shorter relative LTL (ß = -0.18, 95% CI: -0.36, -0.01, P-value < 0.01). Moreover, higher total street length in 100 m buffer around residence and lower residential distance to major roads were associated with shorter relative LTL (ß = -0.25, 95% CI: -0.37, -0.13, P-value < 0.01, and 0.32, 95% CI: 0.20, 0.44, P-value < 0.01, respectively). Overall, our study suggested that higher exposure to air pollution and traffic at kindergarten and residential home were associated with shorter relative LTL in preschool children.


Subject(s)
Air Pollution , Air Pollutants , Child , Child, Preschool , Cross-Sectional Studies , Environmental Exposure , Humans , Iran , Leukocytes , Particulate Matter , Telomere
7.
Curr Environ Health Rep ; 5(3): 351-364, 2018 09.
Article in English | MEDLINE | ID: mdl-30008171

ABSTRACT

PURPOSE OF REVIEW: An emerging body of evidence has raised concern regarding the potentially harmful effects of inhaled pollutants on the central nervous system during the last decade. In the general population, traffic-related air pollution (TRAP) exposure has been associated with adverse effects on cognitive, behavior, and psychomotor development in children, and with cognitive decline and higher risk of dementia in the elderly. Recently, studies have interfaced environmental epidemiology with magnetic resonance imaging to investigate in vivo the effects of TRAP on the human brain. The aim of this systematic review was to describe and synthesize the findings from these studies. The bibliographic search was carried out in PubMed with ad hoc keywords. RECENT FINDINGS: The selected studies revealed that cerebral white matter, cortical gray matter, and basal ganglia might be the targets of TRAP. The detected brain damages could be involved in cognition changes. The effect of TRAP on cognition appears to be biologically plausible. Interfacing environmental epidemiology and neuroimaging is an emerging field with room for improvement. Future studies, together with inputs from experimental findings, should provide more relevant and detailed knowledge about the nature of the relationship between TRAP exposure and cognitive, behavior, and psychomotor disorders observed in the general population.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Brain Diseases/chemically induced , Central Nervous System/drug effects , Cognition/drug effects , Environmental Exposure/adverse effects , Vehicle Emissions , Air Pollutants/analysis , Environmental Health , Humans , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...