Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 117(1): 43-57, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38092702

ABSTRACT

The western honey bee (Apis mellifera L.) is the most globally used managed pollinator species, but it can have limited pollinating activity on nectariferous crops displaying anthers isolated from stigmas, i.e., when anthers are spatially or temporally separated from stigma within or between flowers. We supplemented honey bee colonies with pollen in the combs or in paste form laid on top of the hive frames to test if these treatments could reduce their pollen foraging and increase their pollinating activity in a monoecious and nectariferous cultivar of cantaloupe melon (Cucumis melo L.), in comparison with control colonies not supplemented. We recorded the pollen forager density per flower, the number of pollen grains deposited per stigma and their resulting fruit set, seed set and fruit mass, before and after the colony pollen supplementations. The number of pollen grains deposited by honey bees on stigmas increased gradually after pollen supplementation in the combs. But pollen foraging decreased only moderately, and no effect could be observed on any yield component except the seed set. On the other hand, there was no effect of the pollen paste laid on top of the frames either on stigmatic pollen loads, on colony pollen foraging or on any yield component. Supplementing honey bee colonies with pollen in the combs can therefore be an effective means for increasing their pollinating activity in nectariferous crops displaying anthers isolated from stigmas, e.g., Amaryllidaceae, Apiaceae, Cucurbitaceae, avocado, all hybrid seed productions. The context for the potential use of pollen substitutes is discussed.


Subject(s)
Cucurbitaceae , Hymenoptera , Bees , Animals , Fruit , Seeds , Pollen , Crops, Agricultural , Pollination
2.
Proc Biol Sci ; 284(1865)2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29070719

ABSTRACT

Iridescence-change of colour with changes in the angle of view or of illumination-is widespread in the living world, but its functions remain poorly understood. The presence of iridescence has been suggested in flowers where diffraction gratings generate iridescent colours. Such colours have been suggested to serve plant-pollinator communication. Here we tested whether a higher iridescence relative to corolla pigmentation would facilitate discrimination, learning and retention of iridescent visual targets. We conditioned bumblebees (Bombus terrestris) to discriminate iridescent from non-iridescent artificial flowers and we varied iridescence detectability by varying target iridescent relative to pigment optical effect. We show that bees rewarded on targets with higher iridescent relative to pigment effect required fewer choices to complete learning, showed faster generalization to novel targets exhibiting the same iridescence-to-pigment level and had better long-term memory retention. Along with optical measurements, behavioural results thus demonstrate that bees can learn iridescence-related cues as bona fide signals for flower reward. They also suggest that floral advertising may be shaped by competition between iridescence and corolla pigmentation, a fact that has important evolutionary implications for pollinators. Optical measurements narrow down the type of cues that bees may have used for learning. Beyond pollinator-plant communication, our experiments help understanding how receivers influence the evolution of iridescence signals generated by gratings.


Subject(s)
Bees/physiology , Flowers/physiology , Generalization, Stimulus , Learning , Memory , Visual Perception , Animals , Iridescence , Pigmentation , Pollination
SELECTION OF CITATIONS
SEARCH DETAIL
...