Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 34(12): 1721-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24123792

ABSTRACT

The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene-specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger-based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite-stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.


Subject(s)
Exome , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Genetic Counseling , Genetic Testing , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
2.
Nat Genet ; 42(6): 483-5, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20436468

ABSTRACT

Schinzel-Giedion syndrome is characterized by severe mental retardation, distinctive facial features and multiple congenital malformations; most affected individuals die before the age of ten. We sequenced the exomes of four affected individuals (cases) and found heterozygous de novo variants in SETBP1 in all four. We also identified SETBP1 mutations in eight additional cases using Sanger sequencing. All mutations clustered to a highly conserved 11-bp exonic region, suggesting a dominant-negative or gain-of-function effect.


Subject(s)
Carrier Proteins/genetics , Nuclear Proteins/genetics , Abnormalities, Multiple/genetics , Base Sequence , Face/abnormalities , Humans , Intellectual Disability/genetics , Molecular Sequence Data , Mutation , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...