Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(7): 1833-1846, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37830999

ABSTRACT

Illicit connections of wastewater to stormwater systems are the main drawback of separate sewer systems, as they lead to a direct discharge of untreated wastewater to the aquatic environment. Consequently, several inspection methods have been developed for detecting illicit connections. This study simultaneously applied several low- and high-tech methods for the detection of illicit connections in the same catchment (De Heuvel, the Netherlands). The methods included mesh wire screens for capturing coarse contamination, measurements of electroconductivity and temperature, sampling and quantification of Escherichia coli and extended-spectrum ß-lactamase-producing E. coli (ESBL-EC), DNA analysis via quantitative polymerase chain reaction for human-, dog-, and bird-specific fecal indicators, and distributed temperature sensing. Significant illicit connections could be identified using all methods. Nonetheless, hydraulic conditions and, predominantly, the sewage volume determine whether a misconnection can be detected by especially the low-tech methods. Using these results, the identified misconnections were repaired and biological and DNA analyses were repeated. Our results demonstrate that there were no changes in E. coli or ESBL-EC before and after mitigation, suggesting that these common markers of fecal contamination are not specific enough to evaluate the performance of mitigation efforts. However, a marked decrease in human wastewater markers (HF183) was observed.


Subject(s)
Environmental Monitoring , Wastewater , Animals , Humans , Dogs , Environmental Monitoring/methods , Escherichia coli/genetics , Sewage/analysis , Feces/chemistry , DNA
2.
J Infect ; 82(2): 216-226, 2021 02.
Article in English | MEDLINE | ID: mdl-33275955

ABSTRACT

OBJECTIVES: To determine the contributions of several animal and environmental sources of human campylobacteriosis and identify source-specific risk factors. METHODS: 1417 Campylobacter jejuni/coli isolates from the Netherlands in 2017-2019 were whole-genome sequenced, including isolates from human cases (n = 280), chickens/turkeys (n = 238), laying hens (n = 56), cattle (n = 158), veal calves (n = 49), sheep/goats (n = 111), pigs (n = 110), dogs/cats (n = 100), wild birds (n = 62), and surface water (n = 253). Questionnaire-based exposure data was collected. Source attribution was performed using core-genome multilocus sequence typing. Risk factors were determined on the attribution estimates. RESULTS: Cases were mostly attributed to chickens/turkeys (48.2%), dogs/cats (18.0%), cattle (12.1%), and surface water (8.5%). Of the associations identified, never consuming chicken, as well as frequent chicken consumption, and rarely washing hands after touching raw meat, were risk factors for chicken/turkey-attributable infections. Consuming unpasteurized milk or barbecued beef increased the risk for cattle-attributable infections. Risk factors for infections attributable to environmental sources were open water swimming, contact with dog faeces, and consuming non-chicken/turkey avian meat like game birds. CONCLUSIONS: Poultry and cattle are the main livestock sources of campylobacteriosis, while pets and surface water are important non-livestock sources. Foodborne transmission is only partially consistent with the attributions, as frequency and alternative pathways of exposure are significant.


Subject(s)
Campylobacter Infections , Animals , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Cats , Cattle , Chickens , Dogs , Female , Multilocus Sequence Typing , Netherlands/epidemiology , Poultry , Sheep , Swine
3.
Water Res ; 187: 116421, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32992147

ABSTRACT

Campylobacter jejuni and C. coli, the primary agents of human bacterial gastroenteritis worldwide, are widespread in surface water. Several animal sources contribute to surface water contamination with Campylobacter, but their relative contributions thus far remained unclear. Here, the prevalence, genotype diversity, and potential animal sources of C. jejuni and C. coli strains in surface water in the Netherlands were investigated. It was also assessed whether the contribution of the different animal sources varied according to surface water type (i.e. agricultural water, surface water at discharge points of wastewater treatment plants [WWTPs], and official recreational water), season, and local livestock (poultry, pig, ruminant) density. For each surface water type, 30 locations spread over six areas with either high or low density of poultry, ruminants, or pigs, were sampled once every season in 2018-2019. Campylobacter prevalence was highest in agricultural waters (77%), and in autumn and winter (74%), and lowest in recreational waters (46%) and in summer (54%). In total, 76 C. jejuni and 177 C. coli water isolates were whole-genome sequenced. Most C. coli water isolates (78.5%) belonged to hitherto unidentified clones when using the seven-locus sequence type (ST) scheme, while only 11.8% of the C. jejuni isolates had unidentified STs. The origin of these isolates, as defined by core-genome multi-locus sequence typing (cgMLST), was inferred by comparison with Campylobacter strain collections from meat-producing poultry, laying hens, adult cattle, veal calves, small ruminants, pigs, and wild birds. Water isolates were mainly attributed to wild birds (C. jejuni: 60.0%; C. coli: 93.7%) and meat-producing poultry (C. jejuni: 18.9%; C. coli: 5.6%). Wild bird contribution was high among isolates from recreational waters and WWTP discharge points, and in areas with low poultry (C. coli) or high ruminant (C. jejuni) densities. The contribution of meat-producing poultry was high in areas with high density of poultry, springtime, agricultural waters and WWTP discharge points. While wild birds and poultry were the main contributors to Campylobacter contamination in surface water, their contribution differed significantly by water type, season, and local poultry and ruminant densities.


Subject(s)
Campylobacter Infections , Campylobacter coli , Campylobacter jejuni , Animals , Campylobacter Infections/epidemiology , Campylobacter coli/genetics , Campylobacter jejuni/genetics , Cattle , Chickens , Female , Multilocus Sequence Typing , Netherlands , Poultry , Swine , Water
4.
Environ Int ; 137: 105516, 2020 04.
Article in English | MEDLINE | ID: mdl-32007691

ABSTRACT

Swimming ponds are artificial ecosystems for bathing in which people imitate the conditions of natural waters. Swimming in natural water may pose health risks if the water quality is microbiologically poor. Swimming ponds are small water bodies that may be used by relatively large groups of people, moreover, the water is not disinfected, e.g. by using chlorine. The draft new swimming pool legislation in the Netherlands includes water quality requirements for swimming ponds. This study focused on the examination and evaluation of the new microbiological water quality requirements, including Escherichia coli, intestinal enterococci, Pseudomonas aeruginosa and Staphylococcus aureus, in thirteen public swimming pools. In eight of thirteen swimming ponds the water quality met the requirements for fecal indicators; 93-95% of the samples met the requirement for E. coli (≤100/100 ml) and intestinal enterococci (≤50/100 ml). The requirement for P. aeruginosa (≤10/100 ml) was met in eleven of thirteen swimming ponds (99% of the samples). In 68% of the samples the requirement for S. aureus (<1/100 ml) was met. A linear mixed effect analysis showed that E. coli and intestinal enterococci concentrations were significantly dependent on the log10 of turbidity. P. aeruginosa concentrations were significantly dependent on water temperature. 31-45% of the variation between swimming ponds was explained by considering 'pond' as a random effect in the analysis. The monitoring of microbiological parameters in swimming pond water needs selective analytical methods, such as those used in this study, due to large numbers of background bacteria. The draft new Dutch swimming pool legislation provides proper guidance to ensure the microbiological safety of swimming pond water; it would benefit from inclusion of turbidity as an extra parameter. S. aureus is a relevant parameter for non-fecal shedding, although scientific literature does not provide evidence for a norm value based on a dose-response relation for exposure to S. aureus in water.


Subject(s)
Swimming Pools , Water Quality , Ecosystem , Escherichia coli , Netherlands , Ponds , Staphylococcus aureus , Swimming , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...