Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37896700

ABSTRACT

High-aspect-ratio carbon nanotubes can be directly mixed into polymers to create piezoresistive polymers. Reducing the cross-sensitivity and creating unidirectional sensitive sensors can be achieved by aligning the nanotubes before they are cured in the polymer layer. This research presents and characterises this alignment of carbon nanotubes inside polydimethylsiloxane and gives the corresponding strain sensor results. The influence on the alignment method, as well as the field strength, frequency and time is shown. An analytical model is created to investigate the sensor's behaviour and determine the effect of electron-tunnelling in the sensor. A numerical model gives insight into the necessary applied field strength, frequency and time to facilitate alignment in viscous liquids. The experimental data show a two-phase piezoresistive response; first, a linear strain response, after which the more dominant electron-tunnelling piezoresistive phase starts with high gauge factors up to k ≈ 4500 in the preferential direction, depending on the carbon nanotube concentration. Gauge factors in the orthogonal direction remain low (k ≈ 22). Finally, the dynamic stability of the sensors is proven by exposing the sensors to a cyclic strain. Small initial drifts are observed but appear to stabilise after several cycles.

2.
Sensors (Basel) ; 21(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34372305

ABSTRACT

Flexible pressure sensors with piezoresistive polymer composites can be integrated into elastomers to measure pressure changes in sealings, preemptively indicating a replacement is needed before any damage or leakage occurs. Integrating small percentages of high aspect ratio multi-walled carbon nanotubes (MWCNTs) into polymers does not significantly change its mechanical properties but highly affects its electrical properties. This research shows a pressure sensor based on homogeneous dispersed MWCNTs in polydimethylsiloxane with a high sensitivity region (0.13% kPa-1, 0-200 kPa) and sensitive up to 500 kPa. A new 3D-printed mold is developed to directly deposit the conductive polymer on the electrode structures, enabling sensor thicknesses as small as 100 µm.


Subject(s)
Nanotubes, Carbon , Dimethylpolysiloxanes , Electric Conductivity , Electrodes , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...