Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 82(3): 642-52, 2013 May.
Article in English | MEDLINE | ID: mdl-23237226

ABSTRACT

1. Body size is a defining phenotypic trait, but the ecological causes of its evolution are poorly understood. Most studies have considered only a single putative causal agent and have failed to recognise that different environmental agents are often correlated. 2. Darwin suggested that although trait variation across populations is often associated with abiotic variation, evolution is more likely to be driven by biotic factors correlated with the abiotic variation. This hypothesis has received little explicit attention. 3. We use structural equation modelling to quantify the relative importance of abiotic (pH, metal concentrations) and biotic (competition, predation) factors in the evolution of body size in three-spined sticklebacks Gasterosteus aculeatus on the island of North Uist, Scotland. We combine phenotypic data from multiple isolated populations, detailed characterisation of their environment and a common garden experiment that establishes the genetic basis of size differences. 4. Three-spined sticklebacks on North Uist show almost unprecedented intraspecific evolution of body size that has taken place rapidly (<16,000 years). The smallest fish mature at only 7% of the mass of ancestral, anadromous fish. Dwarfism is associated with reduced abundance of a smaller competitor species, the nine-spined stickleback Pungitius pungitius, and with low pH indicative of poor resource conditions. Dwarfism also tends to occur where an important predator, the brown trout Salmo trutta, is also small. The abundance of P. pungitius and the size of S. trutta are themselves related to underlying abiotic environmental variation. 5. Despite the close association between abiotic and biotic factors across populations, our results support Darwin's hypothesis that biotic factors, associated with variation in the abiotic environment, are more important in explaining evolution than is abiotic variation per se. This study demonstrates the importance of considering the relationships between environmental variables before conclusions can be drawn about the causes of (body size) evolution on islands.


Subject(s)
Biological Evolution , Body Size , Competitive Behavior , Food Chain , Fresh Water/chemistry , Smegmamorpha/physiology , Animals , Female , Hydrogen-Ion Concentration , Male , Metals, Alkali/analysis , Metals, Alkaline Earth/analysis , Models, Biological , Scotland , Smegmamorpha/genetics
2.
Ecol Evol ; 3(15): 5119-26, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24455141

ABSTRACT

Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that "Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance".

3.
Parasitology ; 139(11): 1478-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23025902

ABSTRACT

Parasite ecologists are often interested in the repeatability of patterns in parasite communities in space and/or time, because of implications for the dynamics of host-parasite interactions. Field studies usually examine temporal and spatial variation in isolation or limit themselves to a small number of host populations. Here, we studied the macroparasite communities of 12 populations of three-spined stickleback, Gasterosteus aculeatus L., on North Uist, Scotland, separated by small geographical distances, during the breeding season in 2 consecutive years (2007 and 2008) to determine: (1) the extent of spatial variation in macroparasite communities, (2) whether this variation is consistent across years, and (3) whether habitat characteristics can explain differences in macroparasite community composition among populations. We found substantial variation in parasite communities among populations. Generally, measures of parasite community composition were higher in 2008 than in 2007, but this effect of year was consistent across populations, such that the relative differences in these measures among populations changed little between years. These data suggest that there is short-term stability in the spatial variation in macroparasite communities of North Uist sticklebacks. However, none of the 5 habitat characteristics measured explained spatial variation in any measure of parasite community composition.


Subject(s)
Biodiversity , Fish Diseases/epidemiology , Fish Diseases/parasitology , Host-Parasite Interactions , Smegmamorpha/parasitology , Animals , Ecosystem , Linear Models , Population Density , Prevalence , Scotland
SELECTION OF CITATIONS
SEARCH DETAIL
...