Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36979681

ABSTRACT

OBJECTIVE: To describe the development of an artificial placenta (AP) system in sheep with learning curve and main bottlenecks to allow survival up to one week. METHODS: A total of 28 fetal sheep were transferred to an AP system at 110-115 days of gestation. The survival goal in the AP system was increased progressively in three consecutive study groups: 1-3 h (n = 8), 4-24 h (n = 10) and 48-168 h (n = 10). Duration of cannulation procedure, technical complications, pH, lactate, extracorporeal circulation (EC) circuit flows, fetal heart rate, and outcomes across experiments were compared. RESULTS: There was a progressive reduction in cannulation complications (75%, 50% and 0%, p = 0.004), improvement in initial pH (7.20 ± 0.06, 7.31 ± 0.04 and 7.33 ± 0.02, p = 0.161), and increment in the rate of experiments reaching survival goal (25%, 70% and 80%, p = 0.045). In the first two groups, cannulation accidents, air bubbles in the extracorporeal circuit, and thrombotic complications were the most common cause of AP system failure. CONCLUSIONS: Achieving a reproducible experimental setting for an AP system is extremely challenging, time- and effort-consuming, and requires a highly multidisciplinary team. As a result of the learning curve, we achieved reproducible transition and survival up to 7 days. Extended survival requires improving instrumentation with custom-designed devices.

2.
Bioact Mater ; 6(12): 4470-4490, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027235

ABSTRACT

Bacterial infection of implanted scaffolds may have fatal consequences and, in combination with the emergence of multidrug bacterial resistance, the development of advanced antibacterial biomaterials and constructs is of great interest. Since decades ago, metals and their ions had been used to minimize bacterial infection risk and, more recently, metal-based nanomaterials, with improved antimicrobial properties, have been advocated as a novel and tunable alternative. A comprehensive review is provided on how metal ions and ion nanoparticles have the potential to decrease or eliminate unwanted bacteria. Antibacterial mechanisms such as oxidative stress induction, ion release and disruption of biomolecules are currently well accepted. However, the exact antimicrobial mechanisms of the discussed metal compounds remain poorly understood. The combination of different metal ions and surface decorations of nanoparticles will lead to synergistic effects and improved microbial killing, and allow to mitigate potential side effects to the host. Starting with a general overview of antibacterial mechanisms, we subsequently focus on specific metal ions such as silver, zinc, copper, iron and gold, and outline their distinct modes of action. Finally, we discuss the use of these metal ions and nanoparticles in tissue engineering to prevent implant failure.

SELECTION OF CITATIONS
SEARCH DETAIL
...