Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Immunol ; 185(2): 133-40, 2016 08.
Article in English | MEDLINE | ID: mdl-26861694

ABSTRACT

The initiation of type 1 diabetes (T1D) requires a break in peripheral tolerance. New insights into neoepitope formation indicate that post-translational modification of islet autoantigens, for example via deamidation, may be an important component of disease initiation or exacerbation. Indeed, deamidation of islet autoantigens increases their binding affinity to the T1D highest-risk human leucocyte antigen (HLA) haplotypes HLA-DR3/DQ2 and -DR4/DQ8, increasing the chance that T cells reactive to deamidated autoantigens can be activated upon T cell receptor ligation. Here we investigated human pancreatic islets and inflammatory and tolerogenic human dendritic cells (DC and tolDC) as potential sources of deamidated islet autoantigens and examined whether deamidation is altered in an inflammatory environment. Islets, DC and tolDC contained tissue transglutaminase, the key enzyme responsible for peptide deamidation, and enzyme activity increased following an inflammatory insult. Islets treated with inflammatory cytokines were found to contain deamidated insulin C-peptide. DC, heterozygous for the T1D highest-risk DQ2/8, pulsed with native islet autoantigens could present naturally processed deamidated neoepitopes. HLA-DQ2 or -DQ8 homozygous DC did not present deamidated islet peptides. This study identifies both human islets and DC as sources of deamidated islet autoantigens and implicates inflammatory activation of tissue transglutaminase as a potential mechanism for islet and DC deamidation.


Subject(s)
Amides/chemistry , Autoantigens/immunology , Autoantigens/metabolism , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Islets of Langerhans/immunology , Protein Processing, Post-Translational , Autoantigens/biosynthesis , Autoantigens/genetics , C-Peptide/immunology , Dendritic Cells/physiology , HLA-DQ Antigens/immunology , HLA-DR3 Antigen/immunology , Humans , Immune Tolerance , Inflammation/immunology , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Proteome , T-Lymphocytes/immunology , Transglutaminases/metabolism
2.
J Virol ; 76(20): 10383-92, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12239315

ABSTRACT

E(rns) is a pestivirus envelope glycoprotein and is the only known viral surface protein with RNase activity. E(rns) is a disulfide-linked homodimer of 100 kDa; it is found on the surface of pestivirus-infected cells and is secreted into the medium. In this study, the disulfide arrangement of the nine cysteines present in the mature dimer was established by analysis of the proteolytically cleaved protein. Fragments were obtained after digestion with multiple proteolytic enzymes and subsequently analyzed by liquid chromatography-electrospray ionization mass spectrometry. The analysis demonstrates which cysteine is involved in dimerization and reveals an extremely rare vicinal disulfide bridge of unknown function. With the assistance of the disulfide arrangement, a three-dimensional model was built by homology modeling based on the alignment with members of the Rh/T2/S RNase family. Compared to these other RNase family members, E(rns) shows an N-terminal truncation, a large insertion of a cystine-rich region, and a C-terminal extension responsible for membrane translocation. The homology to mammalian RNase 6 supports a possible role of E(rns) in B-cell depletion.


Subject(s)
Classical Swine Fever Virus , Disulfides , Membrane Glycoproteins/chemistry , Viral Envelope Proteins/chemistry , Amino Acid Sequence , Animals , Cell Line , Humans , Membrane Glycoproteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Serine Endopeptidases/metabolism , Trypsin/metabolism , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...