Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Eur J Appl Physiol ; 121(3): 803-816, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33355715

ABSTRACT

PURPOSE: To reduce the need for invasive and expensive measures of human biomarkers, sweat is becoming increasingly popular in use as an alternative to blood. Therefore, the (in)dependency of blood and sweat composition has to be explored. METHODS: In an environmental chamber (33 °C, 65% relative humidity; RH), 12 participants completed three subsequent 20-min cycling stages to elicit three different local sweat rates (LSR) while aiming to limit changes in blood composition: at 60% of their maximum heart rate (HRmax), 70% HRmax and 80% HRmax, with 5 min of seated-rest in between. Sweat was collected from the arm and back during each stage and post-exercise. Blood was drawn from a superficial antecubital vein in the middle of each stage. Concentrations of sodium, chloride, potassium, ammonia, lactate and glucose were determined in blood plasma and sweat. RESULTS: With increasing exercise intensity, LSR, sweat sodium, chloride and glucose concentrations increased (P ≤ 0.026), while simultaneously limited changes in blood composition were elicited for these components (P ≥ 0.093). Sweat potassium, lactate and ammonia concentrations decreased (P ≤ 0.006), while blood potassium decreased (P = 0.003), and blood ammonia and lactate concentrations increased with higher exercise intensities (P = 0.005; P = 0.007, respectively). The vast majority of correlations between blood and sweat parameters were non-significant (P > 0.05), with few exceptions. CONCLUSION: The data suggest that sweat composition is at least partly independent of blood composition. This has important consequences when targeting sweat as non-invasive alternative for blood measurements.


Subject(s)
Ammonia/metabolism , Chlorides/metabolism , Exercise/physiology , Glucose/metabolism , Lactic Acid/metabolism , Potassium/metabolism , Sodium/metabolism , Sweat/metabolism , Adult , Ammonia/blood , Chlorides/blood , Female , Humans , Lactic Acid/blood , Male , Potassium/blood , Sodium/blood
2.
J Sports Sci ; 37(17): 1996-2006, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31079578

ABSTRACT

The purpose of the present study was to identify factors that underlie differences among runners in stride frequency (SF) as a function of running speed. Participants (N = 256; 85.5% males and 14.5% females; 44.1 ± 9.8 years; 181.4 ± 8.4 cm; 75.3 ± 10.6 kg; mean ± SD) shared their wearable data (Garmin Inc). Individual datasets were filtered to obtain representative relationships between stride frequency (SF) and speed per individual, representing in total 16.128 h of data. The group relationship between SF (72.82 to 94.73 strides · min-1) and running speed (V) (from 1.64 to 4.68 m · s-1) was best described with SF = 75.01 + 3.006 V. A generalised linear model with random effects was used to determine variables associated with SF. Variables and their interaction with speed were entered in a stepwise forward procedure. SF was negatively associated with leg length and body mass and an interaction of speed and age indicated that older runners use higher SF at higher speed. Furthermore, run frequency and run duration were positively related to SF. No associations were found with injury incidence, athlete experience or performance. Leg length, body mass, age, run frequency and duration were associated with SFs at given speeds. KEY POINTS On a group level, stride frequency can be described as a linear function of speed: SF (strides · min-1) = 75.01+ 3.006·speed (m · s-1) within the range of 1.64 to 4.68 m · s-1. On an individual level, the SF-speed relation is best described with a second order polynomial. Leg length and body mass were positively related to stride frequency while age was negatively related to stride frequency. Run frequency and run duration were positively related to stride frequency, while running experience, performance and injury incidence were unrelated.


Subject(s)
Gait , Running/physiology , Adult , Anthropometry , Female , Humans , Linear Models , Male , Middle Aged , Wearable Electronic Devices
3.
Med Eng Phys ; 52: 49-58, 2018 02.
Article in English | MEDLINE | ID: mdl-29373232

ABSTRACT

This paper evaluates a new and adaptive real-time cadence detection algorithm (CDA) for unconstrained sensor placement during walking and running. Conventional correlation procedures, dependent on sensor position and orientation, may alternately detect either steps or strides and consequently suffer from false negatives or positives. To overcome this limitation, the CDA validates correlation peaks as strides using the Sylvester's criterion (SC). This paper compares the CDA with conventional correlation methods. 22 volunteers completed 7 different circuits (approx. 140 m) at three gaits-speeds: walking (1.5 m s-1), running (3.4 m s-1), and sprinting (5.2 and 5.7 m s-1), disturbed by various gait-related activities. The algorithm was simultaneously evaluated for 10 different sensor positions. Reference strides were obtained from a foot sensor using a dedicated offline algorithm. The described algorithm resulted in consistent numbers of true positives (85.6-100.0%) and false positives (0.0-2.9%) and showed to be consistently accurate for cadence feedback across all circuits, subjects and sensors (mean ±â€¯SD: 98.9 ±â€¯0.2%), compared to conventional cross-correlation (87.3 ±â€¯13.5%), biased (73.0 ±â€¯16.2) and unbiased (82.2 ±â€¯20.6) autocorrelation procedures. This study shows that the SC significantly improves cadence detection, resulting in robust results for various gaits, subjects and sensor positions.


Subject(s)
Algorithms , Monitoring, Physiologic/instrumentation , Adult , Female , Fourier Analysis , Humans , Male , Monitoring, Physiologic/standards , Reference Standards , Running , Time Factors , Walking
4.
Rehabil Res Pract ; 2014: 462750, 2014.
Article in English | MEDLINE | ID: mdl-24693435

ABSTRACT

Objective. To investigate the feasibility and effects of additional preoperative high intensity strength training for patients awaiting total knee arthroplasty (TKA). Design. Clinical controlled trial. Patients. Twenty-two patients awaiting TKA. Methods. Patients were allocated to a standard training group or a group receiving standard training with additional progressive strength training for 6 weeks. Isometric knee extensor strength, voluntary activation, chair stand, 6-minute walk test (6MWT), and stair climbing were assessed before and after 6 weeks of training and 6 and 12 weeks after TKA. Results. For 3 of the 11 patients in the intensive strength group, training load had to be adjusted because of pain. For both groups combined, improvements in chair stand and 6MWT were observed before surgery, but intensive strength training was not more effective than standard training. Voluntary activation did not change before and after surgery, and postoperative recovery was not different between groups (P > 0.05). Knee extensor strength of the affected leg before surgery was significantly associated with 6-minute walk (r = 0.50) and the stair climb (r - = 0.58, P < 0.05). Conclusion. Intensive strength training was feasible for the majority of patients, but there were no indications that it is more effective than standard training to increase preoperative physical performance. This trial was registered with NTR2278.

5.
Eur J Appl Physiol ; 112(1): 135-44, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21505844

ABSTRACT

We measured changes in maximal voluntary and electrically evoked torque and rate of torque development because of limb unloading. We investigated whether these changes during single joint isometric muscle contractions were related to changes in jump performance involving dynamic muscle contractions and several joints. Six healthy male subjects (21 ± 1 years) underwent 3 weeks of unilateral lower limb suspension (ULLS) of the right limb. Plantar flexor and knee extensor maximal voluntary contraction (MVC) torque and maximal rate of torque development (MRTD), voluntary activation, and maximal triplet torque (thigh; 3 pulses at 300 Hz) were measured next to squat jump height before and after ULLS. MVC of plantar flexors and knee extensors (MVCke) and triplet torque decreased by 12% (P = 0.012), 21% (P = 0.001) and 11% (P = 0.016), respectively. Voluntary activation did not change (P = 0.192). Absolute MRTD during voluntary contractions decreased for plantar flexors (by 17%, P = 0.027) but not for knee extensors (P = 0.154). Absolute triplet MRTD decreased by 17% (P = 0.048). The reduction in MRTD disappeared following normalization to MVC. Jump height with the previously unloaded leg decreased significantly by 28%. No significant relationships were found between any muscle variable and jump height (r < 0.48), but decreases in torque were (triplet, r = 0.83, P = 0.04) or tended to be (MVCke r = 0.71, P = 0.11) related to decreases in jump height. Thus, reductions in isometric muscle torque following 3 weeks of limb unloading were significantly related to decreases in the more complex jump task, although torque in itself (without intervention) was not related to jump performance.


Subject(s)
Lower Extremity/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Restraint, Physical/methods , Task Performance and Analysis , Adaptation, Physiological/physiology , Humans , Locomotion/physiology , Male , Young Adult
7.
J Appl Physiol (1985) ; 107(1): 80-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19470699

ABSTRACT

Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects (n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20 degrees range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50 degrees ). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 +/- 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher (P < 0.05) at knee angles 10 degrees more extended (43.7 +/- 22.2 N.m) and not different (P > 0.05) at knee angles 10 degrees more flexed (35.2 +/- 17.9 N.m) compared with recruitment threshold at AngleTmax (41.8 +/- 21.4 N.m). Also, unexpectedly the discharge rates were similar (P > 0.05) at the three angles: 11.6 +/- 2.2, 11.6 +/- 2.1, and 12.3 +/- 2.1 Hz. Similar angle independent discharge rates were also found for 12 units (n = 5; 7.4 +/- 5.4 %MVC) studied over the wider (50 degrees ) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.


Subject(s)
Isometric Contraction/physiology , Knee/physiology , Motor Neurons/physiology , Quadriceps Muscle/physiology , Recruitment, Neurophysiological/physiology , Adult , Electromyography , Female , Humans , Male , Muscle Stretching Exercises/methods , Torque
8.
Acta Physiol (Oxf) ; 196(3): 315-28, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19032599

ABSTRACT

AIM: Knee extensor neuromuscular activity, rectified surface electromyography (rsEMG) and single motor unit EMG was investigated during isometric (60 degrees knee angle), shortening and lengthening contractions (50-70 degrees, 10 degrees s(-1)) corrected for force-velocity-related differences in force-generating capacity. However, during dynamic contractions additional factors such as shortening-induced force losses and lengthening-induced force gains may also affect force capacity and thereby neuromuscular activity. Therefore, even after correction for force-velocity-related differences in force capacity we expected neuromuscular activity to be higher and lower during shortening and lengthening, respectively, compared to isometric contractions. METHODS: rsEMG of the three superficial muscle heads was obtained in a first session [10 and 50% maximal voluntary contraction (MVC)] and additionally EMG of (46) vastus lateralis motor units was recorded during a second session (4-76% MVC). Using superimposed electrical stimulation, force-generating capacity for shortening and lengthening contractions was found to be 0.96 and 1.16 times isometric (Iso) force capacity respectively. Therefore, neuromuscular activity during submaximal shortening and lengthening was compared with isometric contractions of respectively 1.04Iso (=1/0.96) and 0.86Iso (=1/1.16). rsEMG and discharge rates were normalized to isometric values. RESULTS: rsEMG behaviour was similar (P > 0.05) during both sessions. Shortening rsEMG (1.30 +/- 0.11) and discharge rate (1.22 +/- 0.13) were higher (P < 0.05) than 1.04Iso values (1.05 +/- 0.05 and 1.03 +/- 0.04 respectively), but lengthening rsEMG (1.05 +/- 0.12) and discharge rate (0.90 +/- 0.08) were not lower (P > 0.05) than 0.86Iso values (0.76 +/- 0.04 and 0.91 +/- 0.07 respectively). CONCLUSION: When force-velocity-related differences in force capacity were taken into account, neuromuscular activity was not lower during lengthening but was still higher during shortening compared with isometric contractions.


Subject(s)
Isometric Contraction/physiology , Motor Neurons/physiology , Muscle Contraction/physiology , Quadriceps Muscle/physiology , Action Potentials/physiology , Adult , Biomechanical Phenomena , Electric Stimulation , Electromyography , Female , Humans , Knee/physiology , Male , Quadriceps Muscle/innervation , Recruitment, Neurophysiological/physiology , Torque , Young Adult
9.
Acta Physiol (Oxf) ; 194(3): 223-37, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18691348

ABSTRACT

AIM: We investigated the relative contribution of the vastus medialis (VM) muscle to total isometric knee extension torque at 10 degrees , 30 degrees , 60 degrees and 90 degrees knee flexion. In the past a more prominent role of the VM muscle at more extended knee angles has been put forward. However, different components of the quadriceps muscle converge via a common distal tendon. We therefore hypothesized that the relative contribution of the VM to total knee extension torque would be similar across angles. METHODS: At each knee angle the EMG isometric torque relations [20%, 25%, 30%, 35% maximal voluntary contraction (MVC)] of the rectus femoris (RF), vastus lateralis (VL) and VM muscle were established in 10 healthy male subjects; rectified surface EMG was normalized to M-wave area. Subsequently, the VM was functionally eliminated by selective electrical surface stimulation with occluded blood flow. RESULTS: There was no evidence for preferential activation of VM at any of the knee angles. Following VM elimination, total knee extension torque during maximal femoral nerve stimulation (three pulses at 300 Hz) at 10 degrees , 30 degrees , 60 degrees and 90 degrees , respectively, decreased (P < 0.05) to (mean +/- SD): 75.7 +/- 12.2, 75.1 +/- 9.3, 78.2 +/- 7.2 and 76.0 +/- 5.8% (P > 0.05 among knee angles). In addition, during voluntary contractions at 20% MVC the increases in torque output of RF and VL compensating for the loss of VM function were calculated from the increases in EMG and found to be similar (P > 0.05) at 10 degrees , 30 degrees , 60 degrees and 90 degrees values (%MVC), respectively, were: 9.1 +/- 6.8, 7.5 +/- 2.9, 5.9 +/- 3.7 and 6.9 +/- 3.4. CONCLUSION: The present findings support our hypothesis that the VM contributes similarly to total knee extension torque at different knee angles.


Subject(s)
Knee Joint/physiology , Quadriceps Muscle/physiology , Adult , Electric Stimulation/methods , Electromyography/methods , Humans , Isometric Contraction/physiology , Male , Muscle Fatigue/physiology , Range of Motion, Articular/physiology , Torque , Young Adult
10.
Eur J Appl Physiol ; 102(2): 233-42, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17962975

ABSTRACT

Fatigability and muscle oxygen consumption (mVO(2)) during sustained voluntary isometric knee extensions are less at extended (30 degrees knee angle; 0 degrees , full extension) versus flexed knee angles (90 degrees). This lower energy consumption may partially result from lower neural activation at extended knee angles. We hypothesized a smaller difference in mVO(2) between extended and flexed knee angles during electrical stimulation, which guaranteed maximal activation, than during maximal voluntary contractions (MVC). In eight healthy young males, MVC extension torque was obtained at 30 degrees, 60 degrees and 90 degrees knee angles. mVO(2) of the rectus femoris (RF), vastus lateralis (VL) and medialis muscle was measured using near-infrared spectroscopy during tetanic (10 s) and maximal voluntary (15 s) contractions (MVC(15)). For electrically induced contractions, steady state mVO(2) was reached at similar (P > 0.05) times after torque onset (4.6 +/- 0.7 s) at all knee angles. In contrast, during MVC(15) at 30 degrees mVO(2) was reached at 7.1 +/- 1.1 s, significantly later compared to 60 degrees and 90 degrees knee angles. The knee angle dependent differences in mVO(2) were not lower in electrically induced contractions (as hypothesised) but were similar as in voluntary contractions. Normalized mVO(2) at 30 degrees (percentage 90 degrees knee angle) was 79.0 +/- 9.4% (across muscles) for electrically induced and 79.5 +/- 7.6% (across muscles) for voluntary contractions (P < 0.05). We conclude that the slower onset of mVO(2) during voluntary effort at 30 degrees may have been due to a lower maximal activation. However, because steady state mVO(2) both during electrically induced and voluntary contractions was approximately 20% less at extended versus flexed knee angles, the causes for the lower mVO(2) must reside within the muscle itself.


Subject(s)
Electric Stimulation/methods , Knee Joint/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Volition/physiology , Adult , Hip/physiology , Humans , Male , Range of Motion, Articular/physiology , Young Adult
11.
Med Sci Sports Exerc ; 39(8): 1336-46, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17762367

ABSTRACT

PURPOSE: The goal of the present study was to determine the contribution of the intrinsic muscle properties and muscle activation of the knee extensors to the maximal rate of unilateral isometric torque development and to relate both factors to maximal bilateral jumping performance in experienced jumpers. On the basis of previous studies, we hypothesized that maximal rate of torque development during maximal effort isometric contractions and jump height would depend on the subjects' ability for maximal muscle activation rather than on the muscle's contractile properties. METHODS: Eleven male elite volleyball players (20 +/- 2 yr, means +/- SD) performed squat jumps starting from a 120 degrees knee angle (SJ120; full extension = 180 degrees ) and countermovement jumps. In addition, maximal voluntary and electrically evoked unilateral isometric knee-extension torque development (120 degrees angle) was obtained. Torque time integral for the first 40 ms after torque onset (TTI40) and (time to) maximal rate of torque development (MRTD) were calculated. Muscle activation was quantified using surface EMG. RESULTS: Voluntary TTI40 was significantly related to the preceding EMG (r2 = 0.83) and negatively related to the time to MRTD (r2 = 0.64). Voluntary MRTD and TTI40 were not related to their respective values obtained during electrical stimulation (r2 < 0.04). Only electrically evoked MRTD was significantly related to jump height (e.g., r2 = 0.70 for SJ120). CONCLUSIONS: As expected initial maximal voluntary isometric torque development correlated with muscle activation and not with muscle contractile speed. However, unexpectedly, only the latter could predict jump performance in skilled jumpers.


Subject(s)
Isometric Contraction/physiology , Knee Joint/physiology , Muscle, Skeletal/physiology , Sports , Torque , Adolescent , Adult , Electric Stimulation , Electromyography , Humans , Male , Task Performance and Analysis , United Kingdom
12.
Med Sci Sports Exerc ; 39(3): 443-53, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17473770

ABSTRACT

PURPOSE: We investigated the knee-extensor torque at which reoxygenation (inflow of arterial blood) during an isometric contraction stopped, whether this torque depended on maximal torque capacity (MTC), and whether there were differences among the synergists. METHODS: Isometric knee-extension torque was measured using a dynamometer with 90 degrees angles in the hip and knee. Maximal voluntary activation (established with superimposed nerve stimulation) was > 90% in the 15 healthy male subjects (20-30 yr). Near-infrared spectroscopy (NIRS) was used to measure changes in muscle oxygenation of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle during submaximal isometric contractions at intensities of 20-45% MTC with 5% increments, applied in randomized order and divided over 2 d. At each torque, a contraction with an inflated pressure cuff (450 mm Hg), inducing full arterial occlusion, was followed (10 min of rest) by a second contraction without the cuff. RESULTS: MTC ranged from 178 to 348 N.m. The torque at which maximal deoxygenation (all oxygen consumed) during contraction without the cuff became similar (P < 0.05) to the maximal deoxygenation reached with the cuff (indicative for complete occlusion of blood flow during the contraction without the cuff) was significantly higher for the RF (35% MTC) than for both vasti (25% MTC). There was no significant relation between MTC and relative (% MTC) torque at which muscle reoxygenation stopped. CONCLUSION: Knee-extensor reoxygenation stopped at lower torques than previously reported for blood flow in this muscle, and this occurred at the same % MTC in subjects of different strength but at different % MTC for the different synergists.


Subject(s)
Exercise/physiology , Isometric Contraction/physiology , Knee/physiology , Muscle, Skeletal/physiology , Torque , Adult , Fatigue/physiopathology , Humans , Male , Muscle, Skeletal/blood supply , Pilot Projects , Prospective Studies
13.
Eur J Appl Physiol ; 100(3): 309-20, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17357793

ABSTRACT

The ability to voluntarily activate a muscle is commonly assessed by some variant of the twitch interpolation technique (ITT), which assumes that the stimulated force increment decreases linearly as voluntary force increases. In the present study, subjects (n = 7) with exceptional ability for maximal voluntary activation (VA) of the knee extensors were used to study the relationship between superimposed and voluntary torque. This includes very high contraction intensities (90-100%VA), which are difficult to consistently obtain in regular healthy subjects (VA of approximately 90%). Subjects were tested at 30, 60, and 90 degrees knee angles on two experimental days. At each angle, isometric knee extensions were performed with supramaximal superimposed nerve stimulation (triplet: three pulses at 300 Hz). Surface EMG signals were obtained from rectus femoris, vastus lateralis, and medialis muscles. Maximal VA was similar and very high across knee angles: 97 +/- 2.3% (mean +/- SD). At high contraction intensities, the increase in voluntary torque was far greater than would be expected based on the decrement of superimposed torque. When voluntary torque increased from 79.6 +/- 6.1 to 100%MVC, superimposed torque decreased from 8.5 +/- 2.6 to 2.8 +/- 2.3% of resting triplet. Therefore, an increase in VA of 5.7% (from 91.5 +/- 2.6 to 97 +/- 2.3%) coincided with a much larger increase in voluntary torque (20.4 +/- 6.1%MVC) and EMG (33.9 +/- 6.6%max). Moreover, a conventionally assessed VA of 91.5 +/- 2.6% represented a voluntary torque of only 79.6 +/- 6.1%MVC. In conclusion, when maximal VA is calculated to be approximately 90% (as in regular healthy subjects), this probably represents a considerable overestimation of the subjects' ability to maximally drive their quadriceps muscles.


Subject(s)
Knee Joint/physiology , Muscle Contraction/physiology , Quadriceps Muscle/physiology , Range of Motion, Articular/physiology , Adult , Biomechanical Phenomena , Electric Stimulation , Electromyography , Humans , Male , Reproducibility of Results , Torque , Volition
14.
Eur J Appl Physiol ; 98(6): 535-45, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17089159

ABSTRACT

Recently, fatigability and muscle oxygen consumption (mVO(2)) during sustained isometric contractions were found to be less at shorter (30 degrees knee angle; 0 degrees = full extension) compared to longer knee extensor muscle lengths (90 degrees ) and, at low torques, less in the rectus femoris (RF) muscle than in the vastus lateralis and medialis. In the present study we hypothesized that these findings could be accounted for by a knee angle- and a muscle-dependent activation respectively. On two experimental days rectified surface EMG (rsEMG) was obtained as a measure of muscle activation in nine healthy young males. In addition, on day 1 maximal torque capacity (MTC) was carefully determined using superimposed nerve stimulation on brief high intensity contractions (> 70%MVC) at 30, 60 and 90 degrees knee angles. On day 2, subjects performed longer lasting isometric contractions (10-70%MTC) while mVO(2) was measured using near-infrared spectroscopy (NIRS). At 30 degrees , maximal mVO(2) was reached significantly later (11.0 s +/- 6.5 s) and was 57.9 +/- 8.3% less (average +/- SD, across intensities and muscles) than mVO(2) at 60 and 90 degrees (p < 0.05). However, rsEMG was on average only 18.0 +/- 11.8% (p = 0.062) less at the start of the contraction at 30 degrees . At 10%MTC at all knee angles, maximal mVO(2) of the RF occurred significantly later (28.8 +/- 36.0 s) and showed a significantly smaller increase in rsEMG compared to both vasti. In conclusion, it is unlikely that the tendency for less intense muscle activation could fully account for the approximately 60% lower oxygen consumption at 30 degrees , but the later increase in RFmVO(2) seemed to be caused by a less strong activation of the RF.


Subject(s)
Knee Joint/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Adult , Electromyography , Humans , Isometric Contraction/physiology , Male , Torque
15.
J Physiol ; 576(Pt 3): 913-22, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16916911

ABSTRACT

Slow relaxation from an isometric contraction is characteristic of acutely fatigued muscle and is associated with a decrease in the maximum velocity of unloaded shortening (V(max)) and both these phenomena might be due to a decreased rate of cross bridge detachment. We have compared the change in relaxation rate with that of various parameters of the force-velocity relationship over the course of an ischaemic series of fatiguing contractions and subsequent recovery using the human adductor pollicis muscle working in vivo at approximately 37 degrees C in nine healthy young subjects. Maximal isometric force (F(0)) decreased from 91.0 +/- 1.9 to 58.3 +/- 3.5 N (mean +/- s.e.m.). Maximum power decreased from 53.6 +/- 4.0 to 17.7 +/- 1.2 (arbitrary units) while relaxation rate declined from -10.3 +/- 0.38 to -2.56 +/- 0.29 s(-1). V(max) showed a smaller relative change from 673 +/- 20 to 560 +/- 46 deg s(-1) and with a time course that differed markedly from that of slowing of relaxation, showing very little change until late in the series of contractions. Curvature of the force-velocity relationship increased (a/F(0) decreasing from 0.22 +/- 0.02 to 0.11 +/- 0.02) with fatigue and with a time course that was similar to that of the loss of power and the slowing of relaxation. It is concluded that for human muscle working at a normal physiological temperature the change in curvature of the force-velocity relationship with fatigue is a major cause of loss of power and may share a common underlying mechanism with the slowing of relaxation from an isometric contraction.


Subject(s)
Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle Relaxation/physiology , Muscle, Skeletal/physiology , Adult , Calcium/metabolism , Female , Humans , Isometric Contraction/physiology , Male , Middle Aged , Muscle Strength/physiology , Temperature , Time Factors
16.
Eur J Appl Physiol ; 94(5-6): 659-69, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15887021

ABSTRACT

We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P<0.05) and 13.2 +/- 5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7 +/- 6.6% MFC before exercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.


Subject(s)
Electromyography/methods , Isometric Contraction/physiology , Knee/physiology , Motor Neurons/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Adaptation, Physiological/physiology , Adult , Electric Stimulation , Exercise Test , Female , Humans , Male , Muscle Contraction , Muscle, Skeletal/innervation , Stress, Mechanical
17.
J Appl Physiol (1985) ; 99(2): 579-86, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15774700

ABSTRACT

Fatigue resistance of knee extensor muscles is higher during voluntary isometric contractions at short compared with longer muscle lengths. In the present study we hypothesized that this would be due to lower energy consumption at short muscle lengths. Ten healthy male subjects performed isometric contractions with the knee extensor muscles at a 30, 60, and 90 degrees knee angle (full extension = 0 degrees ). At each angle, muscle oxygen consumption (m.VO2) of the rectus femoris, vastus lateralis, and vastus medialis muscle was obtained with near-infrared spectroscopy. m.VO2 was measured during maximal isometric contractions and during contractions at 10, 30, and 50% of maximal torque capacity. During all contractions, blood flow to the muscle was occluded with a pressure cuff (450 mmHg). m.VO2 significantly (P < 0.05) increased with torque and at all torque levels, and for each of the three muscles. m.VO2 was significantly lower at 30 degrees compared with 60 degrees and 90 degrees and m.VO2 was similar (P > 0.05) at 60 degrees and 90 degrees . Across all torque levels, average (+/- SD) m.VO2 at the 30 degrees angle for vastus medialis, rectus femoris, and vastus lateralis, respectively, was 70.0 +/- 10.4, 72.2 +/- 12.7, and 75.9 +/- 8.0% of the average m.VO2 obtained for each torque at 60 and 90 degrees . In conclusion, oxygen consumption of the knee extensors was significantly lower during isometric contractions at the 30 degrees than at the 60 degrees and 90 degrees knee angle, which probably contributes to the previously reported longer duration of sustained isometric contractions at relatively short muscle lengths.


Subject(s)
Isometric Contraction/physiology , Knee Joint/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Physical Endurance/physiology , Posture/physiology , Spectrophotometry, Infrared/methods , Adult , Humans , Male , Torque
18.
J Appl Physiol (1985) ; 98(3): 810-6, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15489262

ABSTRACT

We investigated the role of central activation in muscle length-dependent endurance. Central activation ratio (CAR) and rectified surface electromyogram (EMG) were studied during fatigue of isometric contractions of the knee extensors at 30 and 90 degrees knee angles (full extension = 0 degree). Subjects (n = 8) were tested on a custom-built ergometer. Maximal voluntary isometric knee extension with supramaximal superimposed burst stimulation (three 100-mus pulses; 300 Hz) was performed to assess CAR and maximal torque capacity (MTC). Surface EMG signals were obtained from vastus lateralis and rectus femoris muscles. At each angle, intermittent (15 s on 6 s off) isometric exercise at 50% MTC with superimposed stimulation was performed to exhaustion. During the fatigue task, a sphygmomanometer cuff around the upper thigh ensured full occlusion (400 mmHg) of the blood supply to the knee extensors. At least 2 days separated fatigue tests. MTC was not different between knee angles (30 degrees : 229.6 +/- 39.3 N.m vs. 90 degrees: 215.7 +/- 13.2 N.m). Endurance times, however, were significantly longer (P < 0.05) at 30 vs. 90 degrees (87.8 +/- 18.7 vs. 54.9 +/- 12.1 s, respectively) despite the CAR not differing between angles at torque failure (30 degrees: 0.95 +/- 0.05 vs. 90 degrees: 0.96 +/- 0.03) and full occlusion of blood supply to the knee extensors. Furthermore, rectified surface EMG values of the vastus lateralis (normalized to prefatigue maximum) were also similar at torque failure (30 degrees : 56.5 +/- 12.5% vs. 90 degrees : 58.3 +/- 15.2%), whereas rectus femoris EMG activity was lower at 30 degrees (44.3 +/- 12.4%) vs. 90 degrees (69.5 +/- 25.3%). We conclude that differences in endurance at different knee angles do not find their origin in differences in central activation and blood flow but may be a consequence of muscle length-related differences in metabolic cost.


Subject(s)
Blood Flow Velocity/physiology , Isometric Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Adult , Computer Simulation , Humans , Knee Joint/blood supply , Knee Joint/physiology , Male , Models, Biological , Stress, Mechanical
19.
J Exp Biol ; 208(Pt 1): 55-63, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15601877

ABSTRACT

Low-frequency fatigue (LFF) and post-tetanic potentiation (PTP) were quantified at different muscle lengths in rat medial gastrocnemius (GM) muscle. In situ experiments were performed on GM muscle-tendon complexes of anaesthetised (urethane, 1.5 g kg(-1) i.p.) Wistar rats (N=8). Force-length characteristics were determined at maximal (200 Hz) and submaximal (60 Hz) stimulation. Data for submaximally stimulated muscle were obtained in a non-potentiated and in a potentiated condition. LFF was induced by a series of 40 eccentric contractions. Post-exercise (40-80 min), data for the force-length relationships were obtained once more. Whereas force loss at 200 Hz-stimulation was least at optimum muscle length, L(0,200 Hz), (17.0+/-1.4%, mean +/-S.E.M.), force loss at 60 Hz-stimulation was maximal near L(0,200 Hz) (55.1+/-4.3% at L(0,200 Hz)-1 mm). When the muscle was potentiated, force loss at 60 Hz-stimulation was maximal at short muscle length: L(0,200 Hz)-4 mm (53.5+/-3.8%). The extent of LFF, quantified by a decrease in the 60:200 Hz force ratio, varied with muscle length: LFF increased with decreasing muscle lengths when muscles were potentiated. However, in the non-potentiated condition, LFF was maximal at a length just below L(0,200 Hz); the 60:200 Hz force ratio had decreased to 54.6+/-5.9% of the pre-exercise ratio at L(0,200 Hz)-1 mm. Compared with the non-potentiated condition, LFF was less pronounced in the potentiated condition. PTP counteracted LFF particularly at long muscle lengths. However, at short muscle lengths, LFF was still observed in potentiated muscles.


Subject(s)
Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Exertion/physiology , Analysis of Variance , Animals , Male , Rats , Rats, Wistar
20.
J Exp Biol ; 208(Pt 1): 129-40, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15601884

ABSTRACT

The aim of this study was to establish the extent of extramuscular myofascial force transmission for dissected rat medial gastrocnemius (GM) and plantaris (PL) muscles. Initially, this was done with GM still connected to extramuscular connective tissue (general fascia, neuro-vascular tract and compartmental fascia). Neighbouring muscles were also connected to these tissues. In a later stage, it was dissected progressively until finally a fully dissected in situ GM was obtained, for which the neuro-vascular tract (i.e. the nerves, blood vessels and the surrounding connective tissue) was the only extramuscular tissue left intact. Force of GM was measured not only at its distal tendon in progressive stages of dissection, but also at its dissected proximal tendon. In the stage where GM was still connected to extramuscular tissues, the experiments showed that up to 40.5+/-5.9% (mean +/- S.E.M.) of the force exerted by the neighbouring PL muscle was transmitted onto the calcaneal bone, even when the PL tendon was not connected to this bone. After distal PL-tenotomy, a difference between proximally and distally measured forces of GM constituted evidence for myofascial force transmission. In the fully dissected in situ GM muscle, no relevant myofascial force transmission occurred in the reference position (the position of the GM origin corresponding to a knee angle of 120 degrees). However, some myofascial force transmission occurred when the relative position of the origin of the fully dissected GM muscle was changed with respect to the neuro-vascular tract.


Subject(s)
Connective Tissue/physiology , Dissection , Fascia/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Analysis of Variance , Animals , Biomechanical Phenomena , Electric Stimulation , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...