Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biomed Eng Online ; 19(1): 93, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298072

ABSTRACT

BACKGROUND: Fractional-order (FrOr) models have a high potential to improve pulmonary science. These models could be useful for biomechanical studies and diagnostic purposes, offering accurate models with an improved ability to describe nature. This paper evaluates the performance of the Forced Oscillation (FO) associated with integer (InOr) and FrOr models in the analysis of respiratory alterations in work-related asthma (WRA). METHODS: Sixty-two individuals were evaluated: 31 healthy and 31 with WRA with mild obstruction. Patients were analyzed pre- and post-bronchodilation. The diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve (AUC). To evaluate how well do the studied models correspond to observed data, we analyzed the mean square root of the sum (MSEt) and the relative distance (Rd) of the estimated model values to the measured resistance and reactance measured values. RESULTS AND DISCUSSION: Initially, the use of InOr and FrOr models increased our understanding of the WRA physiopathology, showing increased peripheral resistance, damping, and hysteresivity. The FrOr model (AUC = 0.970) outperformed standard FO (AUC = 0.929), as well as InOr modeling (AUC = 0.838) in the diagnosis of respiratory changes, achieving high accuracy. FrOr improved the curve fitting (MSEt = 0.156 ± 0.340; Rd = 3.026 ± 1.072) in comparison with the InOr model (MSEt = 0.367 ± 0.991; Rd = 3.363 ± 1.098). Finally, we demonstrated that bronchodilator use increased dynamic compliance, as well as reduced damping and peripheral resistance. CONCLUSIONS: Taken together, these results show clear evidence of the utility of FO associated with fractional-order modeling in patients with WRA, improving our knowledge of the biomechanical abnormalities and the diagnostic accuracy in this disease.


Subject(s)
Asthma/diagnosis , Asthma/physiopathology , Models, Biological , Respiratory Mechanics , Adult , Biomechanical Phenomena , Case-Control Studies , Female , Humans , Lung/physiopathology , Male , Middle Aged
2.
Rehabil Res Pract ; 2016: 9285056, 2016.
Article in English | MEDLINE | ID: mdl-27672453

ABSTRACT

Background. In the neonatal intensive care unit (NICU) environment, preterm newborns are subject to environmental stress and numerous painful interventions. It is known that hydrokinesiotherapy promotes comfort and reduces stress because of the physiological properties of water. Objective. To evaluate the short-term effects of hydrokinesiotherapy on reducing stress in preterm newborns admitted to the NICU. Materials and Methods. Fifteen preterm newborns underwent salivary cortisol measurement, pain evaluation using the Neonatal Infant Pain Scale (NIPS), and heart rate, respiratory rate, and peripheral oxygen saturation measurements before and after the application of hydrokinesiotherapy. Results. The mean gestational age of the newborns was 34.2 ± 1.66 weeks, and the mean weight was 1823.3 ± 437.4 g. Immediately after application of hydrokinesiotherapy, a significant reduction was observed in salivary cortisol (p = 0.004), heart rate (p = 0.003), and respiratory rate (p = 0.004) and a significant increase was observed in peripheral oxygen saturation (p = 0.002). However, no significant difference was observed in the NIPS score (p > 0.05). Conclusion. In the present study, neonatal hydrotherapy promoted short-term relief from feelings of stress. Neonatal hydrokinesiotherapy may be a therapeutic alternative. However, this therapy needs to be studied in randomized, crossover, and blinded trials. This trial is registered with NCT02707731.

3.
PLoS One ; 11(9): e0161981, 2016.
Article in English | MEDLINE | ID: mdl-27612198

ABSTRACT

BACKGROUND: The current reference test for the detection of respiratory abnormalities in asbestos-exposed workers is spirometry. However, spirometry has several shortcomings that greatly affect the efficacy of current asbestos control programs. The forced oscillation technique (FOT) represents the current state-of-the-art technique in the assessment of lung function. This method provides a detailed analysis of respiratory resistance and reactance at different oscillatory frequencies during tidal breathing. Here, we evaluate the FOT as an alternative method to standard spirometry for the early detection and quantification of respiratory abnormalities in asbestos-exposed workers. METHODOLOGY/PRINCIPAL FINDINGS: Seventy-two subjects were analyzed. The control group was composed of 33 subjects with a normal spirometric exam who had no history of smoking or pulmonary disease. Thirty-nine subjects exposed to asbestos were also studied, including 32 volunteers in radiological category 0/0 and 7 volunteers with radiological categories of 0/1 or 1/1. FOT data were interpreted using classical parameters as well as integer (InOr) and fractional-order (FrOr) modeling. The diagnostic accuracy was evaluated by investigating the area under the receiver operating characteristic curve (AUC). Exposed workers presented increased obstruction (resistance p<0.001) and a reduced compliance (p<0.001), with a predominance of obstructive changes. The FOT parameter changes were correlated with the standard pulmonary function analysis methods (R = -0.52, p<0.001). Early respiratory abnormalities were identified with a high diagnostic accuracy (AUC = 0.987) using parameters obtained from the FrOr modeling. This accuracy was significantly better than those obtained with classical (p<0.001) and InOr (p<0.001) model parameters. CONCLUSIONS: The FOT improved our knowledge about the biomechanical abnormalities in workers exposed to asbestos. Additionally, a high diagnostic accuracy in the diagnosis of early respiratory abnormalities in asbestos-exposed workers was obtained. This makes the FOT particularly useful as a screening tool in the context of asbestos control and elimination. Moreover, it can facilitate epidemiological research and the longitudinal follow-up of asbestos exposure and asbestos-related diseases.


Subject(s)
Asbestos , Respiratory Function Tests , Respiratory System Abnormalities/chemically induced , Respiratory System Abnormalities/diagnosis , Adult , Airway Resistance/physiology , Early Diagnosis , Female , Humans , Male , Middle Aged , Models, Theoretical , Plethysmography , ROC Curve , Respiratory Mechanics , Respiratory System/physiopathology , Respiratory System Abnormalities/physiopathology , Spirometry
4.
Clinics ; 68(5): 644-651, maio 2013. tab, graf
Article in English | LILACS | ID: lil-675743

ABSTRACT

OBJECTIVES: Silicosis is a chronic and incurable occupational disease that can progress even after the cessation of exposure. Recent studies suggest that the forced oscillation technique may help to clarify the changes in lung mechanics resulting from silicosis as well as the detection of these changes. We investigated the effects of airway obstruction in silicosis on respiratory impedance and evaluated the diagnostic efficacy of the forced oscillation technique in these patients. METHODS: Spirometry was used to classify the airway obstruction, which resulted in four subject categories: controls (n=21), patients with a normal exam (n=12), patients with mild obstruction (n=22), and patients with moderate-to-severe obstruction (n=12). Resistive data were interpreted using the zero-intercept resistance (R0), the resistance at 4 Hz (Rrs4), and the mean resistance. We also analyzed the mean reactance (Xm) and the dynamic compliance. The total mechanical load was evaluated using the absolute value of the respiratory impedance (Z4Hz). The diagnostic potential was evaluated by investigating the area under the receiver operating characteristic curve. ClinicalTrials.gov: NCT01725971. RESULTS: We observed significant (p<0.0002) increases in R0, Rrs4, Rm, and Z4Hz and significant reductions in Crs,dyn (p<0.0002) and Xm (p<0.0001). R0, Rrs4, Rm, and Z4Hz performed adequately in the diagnosis of mild obstruction (area under the curve>0.80) and highly accurately in the detection of moderate-to-severe obstruction (area under the curve>0.90). CONCLUSIONS: The forced oscillation technique may contribute to the study of the pathophysiology of silicosis and may improve the treatment offered to these patients, thus representing an alternative and/or complementary tool for evaluating respiratory mechanics. .


Subject(s)
Female , Humans , Male , Middle Aged , Forced Expiratory Flow Rates/physiology , High-Frequency Ventilation , Respiratory Mechanics/physiology , Silicosis/physiopathology , Area Under Curve , Case-Control Studies , Cross-Sectional Studies , High-Frequency Ventilation/methods , Lung Volume Measurements , Respiratory Function Tests , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...