Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Smooth Muscle Res ; 49: 15-25, 2013.
Article in English | MEDLINE | ID: mdl-23832615

ABSTRACT

Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana, has previously been shown to relax the guinea-pig trachea in a concentration-dependent manner. In this study we aimed to elucidate the mechanisms underlying this action and so contribute to the discovery of natural products with therapeutic potential. A possible interaction between diterpene and the Ca(2+)-calmodulin complex was eliminated as chlorpromazine (10(-6) M), a calmodulin inhibitor, did not significantly alter the diterpene-induced relaxation (pD2 = 4.38 ± 0.07 and 4.25 ± 0.07; mean ± S.E.M., n=5). Trachylobane-318 showed a higher relaxant potency when the trachea was contracted by 18 mM KCl than it did with 60 mM KCl (pD2 = 4.90 ± 0.25 and 3.88 ± 0.01, n=5), suggesting the possible activation of K(+) channels. This was confirmed, as in the presence of 10 mM TEA(+) (a non-selective K(+) channel blocker), diterpene relaxation potency was significantly reduced (pD2 = 4.38 ± 0.07 to 4.01 ± 0.06, n=5). Furthermore, K(+) channel subtypes KATP, KV, SKCa and BKCa seem to be modulated positively by trachylobane-318 (pD2 = 3.91 ± 0.003, 4.00 ± 0.06, 3.45 ± 0.14 and 3.80 ± 0.05, n=5) but not the Kir subtype channel (pD2 = 4.15 ± 0.10, n=5). Cyclic nucleotides were not involved as the relaxation due to aminophylline (pD2 = 4.27 ± 0.09, n=5) was not altered in the presence of 3 × 10(-5) M trachylobane-318 (pD2 = 4.46 ± 0.08, n=5). Thus, at a functional level, trachylobane-318 seems to relax the guinea-pig trachea by positive modulation of K(+) channels, particularly the KATP, KV, SKCa and BKCa subtypes.


Subject(s)
Diterpenes/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Trachea/drug effects , Xylopia/chemistry , Animals , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Female , Guinea Pigs , In Vitro Techniques , Male , Potassium Channels/classification , Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...