Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 7: 1948-1959, 2016.
Article in English | MEDLINE | ID: mdl-28144543

ABSTRACT

The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10-4 to 4.0 × 10-6 mol·L-1 with a limit of detection on the scale of µmol·L-1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10-7 mol·L-1 to be attained.

2.
Beilstein J Nanotechnol ; 6: 2052-61, 2015.
Article in English | MEDLINE | ID: mdl-26665076

ABSTRACT

Two different methods were used to obtain polypyrrole/AuNP (Ppy/AuNP) composites. One through the electrooxidation of the pyrrole monomer in the presence of colloidal gold nanoparticles, referred to as trapping method (T), and the second one by electrodeposition of both components from one solution containing the monomer and a gold salt, referred to as cogeneration method (C). In both cases, electrodeposition was carried out through galvanostatic and potentiostatic methods and using platinum (Pt) or stainless steel (SS) as substrates. Scanning electron microscopy (SEM) demonstrated that in all cases gold nanoparticles of similar size were uniformly dispersed in the Ppy matrix. The amount of AuNPs incorporated in the Ppy films was higher when electropolymerization was carried out by chronopotentiometry (CP). Besides, cogeneration method allowed for the incorporation of a higher number of AuNPs than trapping. Impedance experiments demonstrated that the insertion of AuNPs increased the conductivity. As an electrochemical sensor, the Ppy/AuNp deposited on platinum exhibited a strong electrocatalytic activity towards the oxidation of catechol. The effect was higher in films obtained by CP than in films obtained by chronoamperometry (CA). The influence of the method used to introduce the AuNPs (trapping or cogeneration) was not so important. The limits of detection (LOD) were in the range from 10(-5) to 10(-6) mol/L. LODs attained using films deposited on platinum were lower due to a synergy between AuNPs and platinum that facilitates the electron transfer, improving the electrocatalytic properties. Such synergistic effects are not so pronounced on stainless steel, but acceptable LOD are attained with lower price sensors.

3.
Sensors (Basel) ; 11(2): 1328-44, 2011.
Article in English | MEDLINE | ID: mdl-22319354

ABSTRACT

This work describes the sensing properties of carbon paste electrodes (CPES) prepared from three different types of carbonaceous materials: graphite, carbon microspheres and carbon nanotubes. The electrochemical responses towards antioxidants including vanillic acid, catechol, gallic acid, L-ascorbic acid and L-glutathione have been analyzed and compared. It has been demonstrated that the electrodes based on carbon microspheres show the best performances in terms of kinetics and stability, whereas G-CPEs presented the smallest detection limit for all the antioxidants analyzed. An array of electrodes has been constructed using the three types of electrodes. As demonstrated by means of Principal Component Analysis, the system is able to discriminate among antioxidants as a function of their chemical structure and reactivity.


Subject(s)
Antioxidants/analysis , Carbon/chemistry , Electrochemical Techniques/methods , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Calibration , Catechols/analysis , Catechols/chemistry , Electrodes , Gallic Acid/analysis , Gallic Acid/chemistry , Glutathione/analysis , Glutathione/chemistry , Graphite/chemistry , Kinetics , Limit of Detection , Microscopy, Electron, Scanning , Nanotubes, Carbon/chemistry , Reproducibility of Results , Solutions , Vanillic Acid/analysis , Vanillic Acid/chemistry
4.
Langmuir ; 26(24): 19217-24, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21082798

ABSTRACT

Lutetium bisphthalocyanine (LuPc(2)) nanowires have been successfully obtained by electrophoretic deposition (EPD). The influence of the deposition conditions and annealing in the structure of the films has been studied by AFM, SEM, X-ray diffraction (XRD), UV-vis absorption, and near-infrared (NIR). The electrochemical properties of the EDP films immersed in different electrolytic solutions (KCl, MgCl(2), KClO(4), HCl, and NaOH) indicate that anions diffuse inside the film to maintain the electroneutrality and the kinetics follows the Randles-Sevcik equation. The stability of the response increases strongly upon annealing due to the improvement of the adhesion of the sensitive material to the substrate. The EPD films have been successfully used to detect caffeic acid (an antioxidant of interest in the food industry). The anodic peak associated with the oxidation of caffeic acid appears at 0.54 V and is linearly dependent on the caffeic acid concentration in the 6 × 10(-5) M to 5 × 10(-4) M range with a detection limit of 3.12 × 10(-5) M. The electrochemical behavior of the annealed LuPc(2) EPD films is similar to that observed using Langmuir-Blodgett (LB) nanostructured films. However, the different molecular organization of the molecules inside the film causes differences in the shape and position of the peaks. Although LuPc(2) sensors prepared with both EPD and LB techniques provide stable and reproducible responses, the use of EPD is preferred for real sensing applications because of its lower cost, shorter preparation time, and longer lifetime.

SELECTION OF CITATIONS
SEARCH DETAIL
...