Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 1(21): e90733, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28018977

ABSTRACT

Angiogenesis and co-optive vascular remodeling are prerequisites of solid tumor growth. Vascular heterogeneity, notably perivascular composition, may play a critical role in determining the rate of cancer progression. The contribution of vascular pericyte heterogeneity to cancer progression and therapy response is unknown. Here, we show that angiopoietin-2 (Ang2) orchestrates pericyte heterogeneity in breast cancer with an effect on metastatic disease and response to chemotherapy. Using multispectral imaging of human breast tumor specimens, we report that perivascular composition, as defined by the ratio of PDGFRß- and desmin+ pericytes, provides information about the response to epirubicin but not paclitaxel. Using 17 distinct patient-derived breast cancer xenografts, we demonstrate a cancer cell-derived influence on stromal Ang2 production and a cancer cell-defined control over tumor vasculature and perivascular heterogeneity. The aggressive features of tumors and their distinct response to therapies may thus emerge by the cancer cell-defined engagement of distinct and heterogeneous angiogenic programs.

2.
J Biol Chem ; 287(14): 11533-45, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22315223

ABSTRACT

Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) is a zinc-dependent type I transmembrane metalloproteinase playing pivotal roles in the regulation of pericellular proteolysis and cellular migration. Elevated expression levels of MT1-MMP have been demonstrated to correlate with a poor prognosis in cancer. MT1-MMP has a short intracellular domain (ICD) that has been shown to play important roles in cellular migration and invasion, although these ICD-mediated mechanisms remain poorly understood. In this study, we report that MT1-MMP is mono-ubiquitinated at its unique lysine residue (Lys(581)) within the ICD. Our data suggest that this post-translational modification is involved in MT1-MMP trafficking as well as in modulating cellular invasion through type I collagen matrices. By using an MT1-MMP Y573A mutant or the Src family inhibitor PP2, we observed that the previously described Src-dependent MT1-MMP phosphorylation is a prerequisite for ubiquitination. Taken together, these findings show for the first time an additional post-translational modification of MT1-MMP that regulates its trafficking and cellular invasion, which further emphasizes the key role of the MT1-MMP ICD.


Subject(s)
Cell Movement , Collagen Type I/metabolism , Lysine , Matrix Metalloproteinase 14/chemistry , Matrix Metalloproteinase 14/metabolism , Ubiquitination , Cell Line, Tumor , Gene Expression Regulation, Enzymologic , Humans , Intracellular Space/metabolism , Matrix Metalloproteinase 14/genetics , Mutagenesis, Site-Directed , Mutation , Phosphorylation , Protein Structure, Tertiary , Protein Transport , Proteolysis , Proto-Oncogene Proteins pp60(c-src)/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...