Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697936

ABSTRACT

In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.


Subject(s)
Bacteria , Carbon , Microbiota , Nitrogen , Nutrients , Soil Microbiology , Soil , Antarctic Regions , Nitrogen/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Nutrients/metabolism , Soil/chemistry , Carbon/metabolism , Biodiversity , RNA, Ribosomal, 16S/genetics
2.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-32275302

ABSTRACT

The effects of temperature on microorganisms in high latitude regions, and their possible feedbacks in response to change, are unclear. Here, we assess microbial functionality and composition in response to a substantial temperature change. Total soil biomass, amoA gene sequencing, extracellular activity assays and soil physicochemistry were measured to assess a warming scenario. Soil warming to 15°C for 30 days triggered a significant decrease in microbial biomass compared to baseline soils (0°C; P < 0.05) after incubations had induced an initial increase. These changes coincided with increases in extracellular enzymatic activity for peptide hydrolysis and phenolic oxidation at higher temperatures, but not for the degradation of carbon substrates. Shifts in ammonia-oxidising bacteria (AOB) community composition related most significantly to changes in soil carbon content (P < 0.05), which gradually increased in microcosms exposed to a persistently elevated temperature relative to baseline incubations, while temperature did not influence AOBs. The concentration of soil ammonium (NH4+) decreased significantly at higher temperatures subsequent to an initial increase, possibly due to higher conversion rates of NH4+ to nitrate by nitrifying bacteria. We show that higher soil temperatures may reduce viable microbial biomass in cold environments but stimulate their activity over a short period.


Subject(s)
Betaproteobacteria , Soil , Ammonia/metabolism , Antarctic Regions , Archaea/genetics , Bacteria/metabolism , Betaproteobacteria/metabolism , Biomass , Carbon/metabolism , Oxidation-Reduction , Soil/chemistry , Soil Microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...