Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 25(1): 35-43, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21732459

ABSTRACT

Catheter ablation using radio frequency (RF) has been used increasingly for the treatment of cardiac arrhythmias and may be combined with proton resonance frequency shift (PRFS) -based MR thermometry to determine the therapy endpoint. We evaluated the suitability of two different MR thermometry sequences (TFE and TFE-EPI) and three blood suppression techniques. Experiments were performed without heating, using an optimized imaging protocol including navigator respiratory compensation, cardiac triggering, and image processing for the compensation of motion and susceptibility artefacts. Blood suppression performance and its effect on temperature stability were evaluated in the ventricular septum of eight healthy volunteers using multislice double inversion recovery (MDIR), motion sensitized driven equilibrium (MSDE), and inflow saturation by saturation slabs (IS). It was shown that blood suppression during MR thermometry improves the contrast-to-noise ratio (CNR), the robustness of the applied motion correction algorithm as well as the temperature stability. A gradient echo sequence accelerated by an EPI readout and parallel imaging (SENSE) and using inflow saturation blood suppression was shown to achieve the best results. Temperature stabilities of 2 °C or better in the ventricular septum with a spatial resolution of 3.5 × 3.5 × 8mm(3) and a temporal resolution corresponding to the heart rate of the volunteer, were observed. Our results indicate that blood suppression improves the temperature stability when performing cardiac MR thermometry. The proposed MR thermometry protocol, which optimizes temperature stability in the ventricular septum, represents a step towards PRFS-based MR thermometry of the heart at 3 T.


Subject(s)
Heart/physiology , Magnetic Resonance Imaging/methods , Temperature , Humans , Signal-To-Noise Ratio
2.
Magn Reson Med ; 61(6): 1494-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19353650

ABSTRACT

MR-thermometry allows monitoring of the local temperature evolution during minimally invasive interventional therapies. However, for the particular case of MR-thermometry in the human breast, magnetic field variations induced by the respiratory cycle lead to phase fluctuations requiring a suitable correction strategy to prevent thermometry errors. For this purpose a look-up-table-based multibaseline approach as well as a model-based correction algorithm were applied to MR-thermometry to correct for the periodic magnetic field changes. The proposed correction method is compatible with a variety of sensors monitoring the current respiratory state. The ability to remove phase artefacts during MR-thermometry of the human breast was demonstrated experimentally in five healthy volunteers during 3 min of free-breathing using pencil-beam navigators for respiratory control. An increase of 170-530% in temperature precision was observed for the look-up-table-based approach, whereas a further improvement by 16-36% could be achieved by applying the extended model-based correction.


Subject(s)
Artifacts , Body Temperature/physiology , Breast/physiology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Respiratory Mechanics , Thermography/methods , Adult , Algorithms , Female , Humans , Image Interpretation, Computer-Assisted/methods , Online Systems , Reproducibility of Results , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...