Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biomech Model Mechanobiol ; 23(2): 453-468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38063956

ABSTRACT

The arteriovenous fistula (AVF) is commonly faced with stenosis at the juxta-anastomotic (JXA) region of the vein. Implantation of a flexible nitinol stent across the stenosed JXA has led to the retention of functioning AVFs leading to the resulting AVF geometry being distinctly altered, thereby affecting the haemodynamic environment within it. In this study, large eddy simulations of the flow field within a patient-specific AVF geometry before and after stent implantation were conducted to detail the change in flow features. Although the diseased AVF had much lower flow rates, adverse flow features, such as recirculation zones and swirling flow at the anastomosis, and jet flow at the stenosis site were present. Larger velocity fluctuations (leading to higher turbulent kinetic energy) stemming from these flow features were apparent in the diseased AVF compared to the stented AVF. The unsteadiness at the stenosis created large regions of wall shear stress (WSS) fluctuations downstream of the stenosis site that were not as apparent in the stented AVF geometry. The larger pressure drop across the diseased vein, compared to the stented vein, was primarily caused by the constriction at the stenosis, potentially causing the lower flow rate. Furthermore, the WSS fluctuations in the diseased AVF could lead to further disease progression downstream of the stenosis. The change in bulk flow unsteadiness, pressure drop, and WSS behaviour confirms that the haemodynamic environment of the diseased AVF has substantially improved following the flexible stent implantation.


Subject(s)
Arteriovenous Fistula , Hemodynamics , Humans , Blood Flow Velocity , Constriction, Pathologic , Stents , Arteriovenous Fistula/surgery
2.
Biomicrofluidics ; 17(2): 024108, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37124628

ABSTRACT

Microfluidics devices are gaining significant interest in biomedical applications. However, in a micron-scale device, reaction speed is often limited by the slow rate of diffusion of the reagents. Several active and passive micro-mixers have been fabricated to enhance mixing in microfluidic devices. Here, we demonstrate external control of mixing by rotating a rod-shaped bacterial cell. This rotation is driven by ion transit across the bacterial flagellar stator complex. We first measured the flow fields generated by rotating a single bacterial cell rotationally locked to rotate either clockwise (CW) or counterclockwise (CCW). Micro-particle image velocimetry (µPIV) and particle tracking velocimetry results showed that a bacterial cell of ∼ 2.75 µm long, rotating at 5.75 ± 0.39 Hz in a counterclockwise direction could generate distinct micro-vortices with circular flow fields with a mean velocity of 4.72 ± 1.67 µm/s and maximum velocity of 7.90 µm/s in aqueous solution. We verified our experimental data with a numerical simulation at matched flow conditions, which revealed vortices of similar dimensions and speed. We observed that the flow-field diminished with increasing z-height above the plane of the rotating cell. Lastly, we showed that we could activate and tune rotational mixing remotely using strains engineered with proteorhodopsin, where rotation could be activated by controlled external illumination using green laser light (561 nm).

3.
Health Secur ; 21(1): 61-69, 2023.
Article in English | MEDLINE | ID: mdl-36695665

ABSTRACT

This study aimed to determine optimal mitigation strategies in the event of an aerosolized attack with Bacillus anthracis, a category A bioterrorism agent with a case fatality rate of nearly 100% if inhaled and untreated. To simulate the effect of an anthrax attack, we used a plume dispersion model for Sydney, Australia, accounting for weather conditions. We determined the radius of exposure in different sizes of attack scenarios by spore quantity released per second. Estimations of different spore concentrations were then used to calculate the exposed population to inform a Susceptible-Exposed-Infected-Recovered (SEIR) deterministic mathematical model. Results are shown as estimates of the total number of exposed and infected people, along with the burden of disease, to quantify the amount of vaccination and antibiotics doses needed for stockpiles. For the worst-case scenario, over 500,000 people could be exposed and over 300,000 infected. The number of deaths depends closely on timing to start postexposure prophylaxis. Vaccination used as a postexposure prophylaxis in conjunction with antibiotics is the most effective mitigation strategy to reduce deaths after an aerosolized attack and is more effective when the response starts early (2 days after release) and has high adherence, while it makes only a small difference when started late (after 10 days).


Subject(s)
Anthrax , Bacillus anthracis , Humans , Anthrax/prevention & control , Australia , Anti-Bacterial Agents/therapeutic use , Bioterrorism/prevention & control
4.
J Infect Dis ; 225(9): 1561-1568, 2022 05 04.
Article in English | MEDLINE | ID: mdl-32301491

ABSTRACT

Cases of coronavirus disease 2019 (COVID-19) have been reported in more than 200 countries. Thousands of health workers have been infected, and outbreaks have occurred in hospitals, aged care facilities, and prisons. The World Health Organization (WHO) has issued guidelines for contact and droplet precautions for healthcare workers caring for suspected COVID-19 patients, whereas the US Centers for Disease Control and Prevention (CDC) has initially recommended airborne precautions. The 1- to 2-meter (≈3-6 feet) rule of spatial separation is central to droplet precautions and assumes that large droplets do not travel further than 2 meters (≈6 feet). We aimed to review the evidence for horizontal distance traveled by droplets and the guidelines issued by the WHO, CDC, and European Centre for Disease Prevention and Control on respiratory protection for COVID-19. We found that the evidence base for current guidelines is sparse, and the available data do not support the 1- to 2-meter (≈3-6 feet) rule of spatial separation. Of 10 studies on horizontal droplet distance, 8 showed droplets travel more than 2 meters (≈6 feet), in some cases up to 8 meters (≈26 feet). Several studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) support aerosol transmission, and 1 study documented virus at a distance of 4 meters (≈13 feet) from the patient. Moreover, evidence suggests that infections cannot neatly be separated into the dichotomy of droplet versus airborne transmission routes. Available studies also show that SARS-CoV-2 can be detected in the air, and remain viable 3 hours after aerosolization. The weight of combined evidence supports airborne precautions for the occupational health and safety of health workers treating patients with COVID-19.


Subject(s)
COVID-19 , Aerosols , Aged , Health Personnel , Humans , Infection Control , SARS-CoV-2
5.
Phys Fluids (1994) ; 33(11): 111901, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34803362

ABSTRACT

Respiratory infections transmit through droplets and aerosols generated by the infected individual during respiratory emissions. It is essential to study the flow dynamics of these emissions to develop strategies for mitigating the risk of infection. In particular, the dynamics of droplets expelled during violent exhalations such as sneezing is crucial, but has received little attention to date. Here, for the first time, we present the results of droplet dynamics of 35 sneezes, obtained from four volunteers, using particle tracking velocimetry experiments. Our results reveal a mean droplet velocity of 2-5.4 m/s across the different subjects. These values are significantly lower than what is usually assumed in the studies simulating or replicating sneezes. Furthermore, the large variation in droplet speeds, flow direction, spread angle, and head movement is also quantified. These findings will enable the refinement of models and simulations of sneezes toward improving infection control guidelines.

6.
ACS Biomater Sci Eng ; 7(6): 2791-2802, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34019389

ABSTRACT

Cloth masks can be an alternative to medical masks during pandemics. Recent studies have examined the performance of fabrics under various conditions; however, the performance against violent respiratory events such as human sneezes is yet to be explored. Accordingly, we present a comprehensive experimental study using sneezes by a healthy adult and a tailored image-based flow measurement diagnostic system evaluating all dimensions of protection of commonly available fabrics and their layered combinations: the respiratory droplet blocking efficiency, water resistance, and breathing resistance. Our results reveal that a well-designed cloth mask can outperform a three-layered surgical mask for such violent respiratory events. Specifically, increasing the number of layers significantly increases the droplet blocking efficiency, on average by ∼20 times per additional fabric layer. A minimum of three layers is necessary to resemble the droplet blocking performance of surgical masks, and a combination of cotton/linen (hydrophilic inner layer)-blends (middle layer)-polyester/nylon (hydrophobic outer layer) exhibited the best performance among overall indicators tested. In an optimum three-layered design, the average thread count should be greater than 200, and the porosity should be less than 2%. Furthermore, machine washing at 60 °C did not significantly impact the performance of cloth masks. These findings inform the design of high-performing homemade cloth masks.


Subject(s)
COVID-19 , Adult , Humans , Masks , Pandemics , SARS-CoV-2 , Textiles
7.
Clin Infect Dis ; 72(10): e639-e641, 2021 05 18.
Article in English | MEDLINE | ID: mdl-32945338

ABSTRACT

Choral singing has become a major risk during the coronavirus disease 2019 (COVID-19) pandemic due to high infection rates. Our visualization and velocimetry results reveal that the majority of droplets expelled during singing follow the ambient airflow pattern. These results point toward the possibility of COVID-19 spread by small airborne droplets during singing.


Subject(s)
COVID-19 , Singing , Aerosols , Humans , Pandemics , SARS-CoV-2
8.
Exp Fluids ; 61(8): 176, 2020.
Article in English | MEDLINE | ID: mdl-32834458

ABSTRACT

ABSTRACT: Respiratory activities such as sneezing generate pathogen laden droplets that can deposit in the respiratory tract of a susceptible host to initiate infection. The extent of spread of these droplets determines the safe distance between a patient and health care worker. Here, we have presented a method to visualize the droplets expelled by a sneeze using light-sheet illumination. This method of visualization provides images that clearly resolve the velocities of droplets with minimal overlapping trajectories, towards understanding their flow dynamics. Furthermore, we present the image processing techniques required to perform accurate Particle Tracking Velocimetry to understand the motion of expelled droplets. Flow fields are presented from applying this methodology over multiple sneezes which reveal that less than 1% of droplets expelled travel at velocities greater than 10 m/s and almost 80% of droplets travel at velocities less than 5 m/s. Furthermore, we observe that some droplets are generated by ligament breakup outside the mouth and some are generated within the respiratory tract.

10.
Prehosp Disaster Med ; 35(4): 412-419, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32495728

ABSTRACT

BACKGROUND: Anthrax is a potential biological weapon and can be used in an air-borne or mail attack, such as in the attack in the United States in 2001. Planning for such an event requires the best available science. Since large-scale experiments are not feasible, mathematical modelling is a crucial tool to inform planning. The aim of this study is to systematically review and evaluate the approaches to mathematical modelling of inhalational anthrax attack to support public health decision making and response. METHODS: A systematic review of inhalational anthrax attack models was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The models were reviewed based on a set of defined criteria, including the inclusion of atmospheric dispersion component and capacity for real-time decision support. RESULTS: Of 13 mathematical modelling studies of human inhalational anthrax attacks, there were six studies that took atmospheric dispersion of anthrax spores into account. Further, only two modelling studies had potential utility for real-time decision support, and only one model was validated using real data. CONCLUSION: The limited modelling studies available use widely varying methods, assumptions, and data. Estimation of attack size using different models may be quite different, and is likely to be under-estimated by models which do not consider weather conditions. Validation with available data is crucial and may improve models. Further, there is a need for both complex models that can provide accurate atmospheric dispersion modelling, as well as for simpler modelling tools that provide real-time decision support for epidemic response.


Subject(s)
Anthrax , Bioterrorism/prevention & control , Decision Support Techniques , Models, Theoretical , Public Health , Respiratory Tract Infections , Humans
11.
Anal Chem ; 91(16): 10830-10839, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31343155

ABSTRACT

There is a need for scalable automated lab-on-chip systems incorporating precise hemodynamic control that can be applied to high-content screening of new more efficacious antiplatelet therapies. This paper reports on the development and characterization of a novel active micropump-mixer microfluidic to address this need. Using a novel reciprocating elastomeric micropump design, we take advantage of the flexible structural and actuation properties of this framework to manage the hemodynamics for on-chip platelet thrombosis assay on type 1 fibrillar collagen, using whole blood. By characterizing and harnessing the complex three-dimensional hemodynamics of the micropump operation in conjunction with a microvalve controlled reagent injection system we demonstrate that this prototype can act as a real-time assay of antiplatelet drug pharmacokinetics. In a proof-of-concept preclinical application, we utilize this system to investigate the way in which rapid dosing of human whole blood with isoform selective inhibitors of phosphatidylinositol 3-kinase dose dependently modulate platelet thrombus dynamics. This modular system exhibits utility as an automated multiplexable assay system with applications to high-content chemical library screening of new antiplatelet therapies.


Subject(s)
Indomethacin/blood , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Platelet Aggregation Inhibitors/blood , Blood Platelets/drug effects , Hemodynamics , Humans , Indomethacin/pharmacokinetics , Microfluidic Analytical Techniques/instrumentation , Platelet Aggregation Inhibitors/pharmacokinetics
12.
Phys Rev Lett ; 111(4): 044501, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23931372

ABSTRACT

The scaling and surface area properties of the wrinkled surface separating turbulent from nonturbulent regions in open shear flows are important to our understanding of entrainment mechanisms at the boundaries of turbulent flows. Particle image velocimetry data from high Reynolds number turbulent boundary layers covering three decades in scale are used to resolve the turbulent-nonturbulent interface experimentally and, for the first time, determine unambiguously whether such surfaces exhibit fractal scaling. Box counting of the interface intersection with the measurement plane exhibits power-law scaling, with an exponent between -1.3 and -1.4. A complementary analysis based on spatial filtering of the velocity fields also shows power-law behavior of the coarse-grained interface length as a function of filter width, with an exponent between -0.3 and -0.4. These results establish that the interface is fractal-like with a multiscale geometry and fractal dimension of Df≈2.3-2.4.

SELECTION OF CITATIONS
SEARCH DETAIL
...