Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
MycoKeys ; 106: 43-96, 2024.
Article in English | MEDLINE | ID: mdl-38919541

ABSTRACT

Melanommataceous species exhibit high diversity with a cosmopolitan distribution worldwide and show a prominent saprobic lifestyle. In this study, we explored five saprobic species collected from plant litter substrates from terrestrial habitats in China and Thailand. A combination of morphological characteristics and multi-locus phylogenetic analyses was used to determine their taxonomic classifications. Maximum Likelihood and Bayesian Inference analyses of combined LSU, SSU, ITS and tef1-α sequence data were used to clarify the phylogenetic affinities of the species. Byssosphaeriapoaceicola and Herpotrichiazingiberacearum are introduced as new species, while three new host records, Bertiellafici, By.siamensis and Melanommapopulicola are also reported from litter of Cinnamomumverum, Citrustrifoliata and Fagussylvatica, respectively. Yet, despite the rising interest in the melanommataceous species, there is a considerable gap in knowledge on their host associations and geographical distributions. Consequently, we compiled the host-species associations and geographical distributions of all the so far known melanommataceous species.

2.
Front Microbiol ; 13: 1016285, 2022.
Article in English | MEDLINE | ID: mdl-36483195

ABSTRACT

Fungal taxonomy has a long history and changed significantly in the last few decades. Most recent studies have witnessed morphology combined with DNA-based molecular analyses as the main research tool for fungal species identification. During field surveys, some interesting Didymosphaeriaceae species were found from plant litter in China and Thailand. Morphology combined with phylogenetic analyses (Bayesian and maximum likelihood) of ITS, LSU, SSU, tef1-α, and tub2 loci was used to identify fungal taxa. In this article, three new species and six new host records are described. The new species, Montagnula acaciae, Paraconiothyrium zingiberacearum, and Paraphaeosphaeria brachiariae, can be distinguished from other species of the respective genera based on their distinct size differences (ascomata, asci, and ascospores) and DNA sequence data. The new host records, Montagnula jonesii, Paraconiothyrium fuckelii, Spegazzinia deightonii, and S. tessarthra are reported from Ficus benjamina, Dimocarpus longan, Hedychium coronarium, and Acacia auriculiformis respectively, for the first time. Also, Paraconiothyrium archidendri and P. brasiliense are reported for the first time from Magnolia sp. in China. Moreover, Paraconiothyrium rosae is synonymized under P. fuckelii based on close phylogeny affinities and morphological characteristics. In-depth morphological descriptions, micrographs, and phylogenetic trees are provided to show the placement of new taxa.

3.
Fungal Divers ; 117(1): 1-272, 2022.
Article in English | MEDLINE | ID: mdl-36852303

ABSTRACT

This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.

4.
Sci Rep ; 9(1): 14355, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586104

ABSTRACT

Two new species of Lasiodiplodia (Lasiodiplodia endophytica and Lasiodiplodia magnoliae) are described and illustrated from Magnolia forests in Yunnan, China. Endophytic and saprobic Lasiodiplodia pseudotheobromae and endophytic L. thailandica are new records from this host. The internal transcribed spacers (ITS), part of the translation elongation factor-1α (tef1) and partial ß-tubulin (tub2) sequence data were analyzed to investigate the phylogenetic relationships of the new species with other Lasiodiplodia species. Lasiodiplodia magnoliae is phylogenetically sister to L. mahajangana and L. pandanicola but morphologically distinct from L. mahajangana in having larger conidia. Lasiodiplodia endophytica is most closely related to L. iraniensis and L. thailandica and the three species can be distinguished from one another by 2 base pair differences in ITS and three or four base pair differences in tef1. The new collections suggest that Magnolia forest plants are good hosts for Lasiodiplodia species with endophytic and saprobic life-styles.


Subject(s)
Ascomycota/genetics , Endophytes/genetics , Magnolia/microbiology , Ascomycota/classification , China , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Endophytes/classification , Food Chain , Forests , Fungal Proteins/genetics , Genetic Markers/genetics , Peptide Elongation Factor 1/genetics , Phylogeny , Sequence Analysis, DNA , Tubulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...